

Maßnahmen zur Verminderung von Schallemissionen

Für ENERCON Windenergieanlagen stehen verschiedene schallreduzierte Betriebsmodi zur Verfügung. Die schallreduzierten Betriebsmodi unterscheiden sich in der Intensität der Schallreduktion und erfüllen jederzeit die am Standort geltenden Anforderungen in Bezug auf zulässige Schallemissionen.

Für die Aktivierung der schallreduzierten Betriebsmodi gelten unterschiedliche Bedingungen. Die Bedingungen richten sich nach vordefinierten Zeitintervallen. Jedem Zeitintervall kann ein schallreduzierter Betriebsmodus zugeordnet werden, der die lokalen Anforderungen an die Schallemission erfüllt. Wenn die örtliche Zeit mit einer vordefinierten Tageszeit übereinstimmt, wechselt die Windenergieanlage in den entsprechenden schallreduzierten Betriebsmodus.

Bei Betrieb in einem schallreduzierten Betriebsmodus wird die Drehzahl der Windenergieanlage reduziert, wodurch die Schallemission der Windenergieanlage abnimmt. Bekommt die Steuerung der Windenergieanlage den Befehl, auf eine andere Betriebskennlinie zu wechseln, orientieren sich die Drehzahl und somit auch die Leistung an den von dieser Betriebskennlinie vorgegebenen Werten. Die Windenergieanlage passt daraufhin die Drehzahl des Rotors durch die Rotorblattverstellung an die geänderten Drehzahl-zu-Windgeschwindigkeit-Verhältnisse an und hält diese Drehzahl für die jeweilige Windgeschwindigkeit konstant.

Die Konfiguration der schallreduzierten Betriebsmodi erfolgt individuell für die entsprechende Windenergieanlage. Der Status kann über das Fernüberwachungssystem eingesehen werden.

Maßnahmen zur Verminderung von Schattenemissionen

Die Schattenabschaltung dient dazu, die Windenergieanlage bedarfsgerecht anzuhalten und so Immissionen durch periodischen Schattenwurf an relevanten Orten zu verringern oder zu vermeiden.

Periodischer Schattenwurf entsteht durch die wiederkehrende Verschattung des direkten Sonnenlichts durch die Bewegung der Rotorblätter der Windenergieanlage. Das Auftreten dieses Effekts ist abhängig von der aktuellen lokalen Wetterlage, der Ausrichtung der Gondel entsprechend der Windrichtung, dem Sonnenstand und den Betriebszeiten der Windenergieanlage.

Die Schattenabschaltung wertet die ermittelten Daten ständig aus. Die Windenergieanlage hält an, wenn an einem Immissionsort, beispielsweise an einem Wohnhaus, unzulässiger periodischer Schattenwurf zu erwarten ist.

Die Schattenabschaltungen werden im Fernüberwachungssystem als Statusmeldungen dokumentiert.

Technische Beschreibung

Schattenabschaltung ENERCON Platform Independent Control System (PI-CS)

Herausgeber ENERCON GmbH - Dreekamp 5 - 26605 Aurich - Deutschland

Telefon: +49 4941 927-0 • Telefax: +49 4941 927-109 E-Mail: info@enercon.de • Internet: http://www.enercon.de

Geschäftsführer: Dr. Jürgen Zeschky, Dr. Martin Prillmann, Dr. Michael Jaxy Zuständiges Amtsgericht: Aurich • Handelsregisternummer: HRB 411

Ust.ld.-Nr.: DE 181 977 360

Urheberrechtshinweis

Die Inhalte dieses Dokuments sind urheberrechtlich sowie hinsichtlich der sonstigen geistigen Eigentumsrechte durch nationale und internationale Gesetze und Verträge geschützt. Die Rechte an den Inhalten dieses Dokuments liegen bei der ENERCON GmbH, sofern und soweit nicht ausdrücklich ein anderer Inhaber angegeben oder offensichtlich erkennbar ist.

Die ENERCON GmbH räumt dem Verwender das Recht ein, zu Informationszwecken für den eigenen, rein unternehmensinternen Gebrauch Kopien und Abschriften dieses Dokuments zu erstellen; weitergehende Nutzungsrechte werden dem Verwender durch die Bereitstellung dieses Dokuments nicht eingeräumt. Jegliche sonstige Vervielfältigung, Veränderung, Verbreitung, Veröffentlichung, Weitergabe, Überlassung an Dritte und/oder Verwertung der Inhalte dieses Dokuments ist – auch auszugsweise – ohne vorherige, ausdrückliche und schriftliche Zustimmung der ENERCON GmbH untersagt, sofern und soweit nicht zwingende gesetzliche Vorschriften ein Solches gestatten.

Dem Verwender ist es untersagt, für das in diesem Dokument wiedergegebene Know-how oder Teile davon gewerbliche Schutzrechte gleich welcher Art anzumelden

Sofern und soweit die Rechte an den Inhalten dieses Dokuments nicht bei der ENERCON GmbH liegen, hat der Verwender die Nutzungsbestimmungen des jeweiligen Rechteinhabers zu beachten.

Geschützte Marken

Alle in diesem Dokument ggf. genannten Marken- und Warenzeichen sind geistiges Eigentum der jeweiligen eingetragenen Inhaber; die Bestimmungen des anwendbaren Kennzeichen- und Markenrechts gelten uneingeschränkt.

Änderungsvorbehalt

Die ENERCON GmbH behält sich vor, dieses Dokument und den darin beschriebenen Gegenstand jederzeit ohne Vorankündigung zu ändern, insbesondere zu verbessern und zu erweitern, sofern und soweit vertragliche Vereinbarungen oder gesetzliche Vorgaben dem nicht entgegenstehen.

Dokumentinformation

Dokument-ID	D02906137/1.0-de
Vermerk	Originaldokument

Datum	Sprache	DCC	Werk / Abteilung
2024-04-22	de	DB	WRD Wobben Research and Development GmbH / Documentation Department

Inhaltsverzeichnis

1	Allgemeines			
2	Funktionsweise			
	2.1	Bestimmung der potentiellen Schattenwurfzeit	4	
	2.2	Messung der Beleuchtungsstärke	4	
	2.3	Abschaltautomatik	5	
	2.4	Erweiterte Funktionen	5	
3	Sich	Sicherheit		
4	Protokollierung			

1 Allgemeines

Periodischer Schattenwurf ist die wiederkehrende Verschattung des direkten Sonnenlichts durch die Bewegung der Rotorblätter einer Windenergieanlage. Das Auftreten dieses Effekts ist abhängig von der aktuellen lokalen Wetterlage, der Ausrichtung der Gondel entsprechend der Windrichtung, dem Sonnenstand und den Betriebszeiten der Windenergieanlage.

2 Funktionsweise

Die Schattenabschaltung für Windenergieanlagen mit dem Steuerungstypen PI-CS erfolgt über den ENERCON SCADA Edge Server.

2.1 Bestimmung der potentiellen Schattenwurfzeit

Der Schattenabschaltung liegt ein kalendarisches System zugrunde. Die Anfangs- und Endzeiten des astronomisch möglichen Schattenwurfs für betroffene Immissionsorte werden unter Berücksichtigung der standortspezifischen Parameter wie Nabenhöhe, Rotordurchmesser und Koordinaten der Windenergieanlage sowie der Lage des Immissionsorts und dessen Topografie berechnet.

Die daraus ermittelten Abschaltzeiten werden im ENERCON SCADA Edge Server programmiert.

Ein Feinabgleich dieser Abschaltzeiten ist für jeden Immissionsort und Zeitraum jederzeit durchführbar.

2.2 Messung der Beleuchtungsstärke

Die Erzeugung periodischen Schattenwurfs ist abhängig von der Sonneneinstrahlung. Gemäß den Aussagen der Bund/Länder-Arbeitsgemeinschaft für Immissionsschutz (LAI) ist Schattenwurf zu erwarten, wenn die Sonneneinstrahlung auf der zur Einfallsrichtung normalen Ebene mehr als 120 W/m² beträgt.

Die Höhe der Beleuchtungsstärke auf einer waagerechten Messfläche wird vom Sonnenstand sowie vom fotometrischen Strahlungsäquivalent beeinflusst. Dieses wird von der Lichtbrechung und der Lufttrübung bestimmt und ist ebenfalls vom Sonnenstand abhängig. Für die Beleuchtungsstärke in Abhängigkeit zum Sonnenstand können somit nur näherungsweise Werte bestimmt werden.

Zur Messung der Beleuchtungsstärke werden die Sensoren so angeordnet, dass sich mindestens ein Sensor auf der Sonnenseite und ein Sensor auf der Schattenseite befindet.

Aus den Messwerten der Sensoren werden die höchste und die niedrigste Beleuchtungsstärke ermittelt, also die Licht- und die Schattenintensität.

Die Beurteilung, ob Schattenwurf möglich ist, erfolgt somit nicht über eine mit Toleranzen behaftete Messung der Beleuchtungsstärke, sondern über das Verhältnis von Licht- zu Schattenintensität und der daraus ermittelten Abschaltintensität.

Für eine Beleuchtungsstärke von 120 W/m² beträgt die ermittelte Abschaltintensität 36 %. Dieser Wert ist unabhängig vom Sonnenstand. Sinkt das Verhältnis von Licht- zu Schattenintensität unter 36 %, liegt eine Beleuchtungsstärke von mehr als 120 W/m² vor. Es kommt zu Schattenwurf.

2.3 Abschaltautomatik

Sobald innerhalb des programmierten Zeitfensters der eingestellte Wert der Abschaltintensität unterschritten ist, wird die Schattenabschaltung aktiviert. Eine Mittelwertbildung für die gemessene Beleuchtungsstärke erfolgt nicht. Die Abschaltautomatik reagiert auch bei einer kurzzeitigen Unterschreitung des eingestellten Werts der Abschaltintensität. Eine Verzögerungszeit für das Ansprechen der Schattenabschaltung kann über Filterzeiten definiert werden. Ein Parameter legt fest, wie lange im Mittel das Verhältnis von Licht- zu Schattenintensität unter dem voreingestellten Wert der Abschaltintensität liegen muss, damit die Schattenabschaltung aktiviert wird.

Ändern sich die Lichtverhältnisse so, dass Schattenwurf nicht mehr möglich ist, bleibt die Schattenabschaltung zunächst aktiv. Die Schattenabschaltung wird deaktiviert und die Windenergieanlage nimmt den Betrieb wieder auf, wenn das programmierte Zeitfenster abgelaufen ist oder wenn über einen vorgegebenen Zeitraum der Wert der Abschaltintensität dauerhaft überschritten wird. Ein Parameter legt fest, wie lange im Mittel das Verhältnis von Licht- zu Schattenintensität über dem voreingestellten Wert der Abschaltintensität liegen muss, damit die Schattenabschaltung deaktiviert wird.

2.4 Erweiterte Funktionen

Die Schattenabschaltung kann auch ohne Berücksichtigung der Beleuchtungsstärke erfolgen. Dabei wird die Windenergieanlage zeitgesteuert nach den im ENERCON SCADA Edge Server programmierten Zeitfenstern abgeschaltet. Die Windenergieanlage wird dann auch bei Bewölkung angehalten.

Durch die verfügbare Wochentagfunktion kann die Abschaltung auf ausgewählte Wochentage begrenzt werden. Diese Funktion ist beispielsweise für Windenergieanlagen sinnvoll, die an Industrie- oder Gewerbegebiete angrenzen, in denen an Wochenenden keine Tätigkeiten in schützenswerten Arbeitsräumen stattfinden.

Die erweiterten Funktionen können gezielt für ausgewählte Immissionsorte umgesetzt werden.

3 Sicherheit

Die Funktion der Lichtsensorik wird während des Betriebs laufend automatisch auf Plausibilität geprüft. Sind die gemessenen Werte nicht plausibel, wird eine Meldung generiert.

Durch den Ausfall eines Sensors, z. B. durch Kabelbruch oder Kurzschluss, fällt das Verhältnis von Schatten- zu Lichtintensität unter den Wert der Abschaltintensität. Die Windenergieanlage hält innerhalb des programmierten Zeitfensters an und eine Meldung wird generiert.

4 Protokollierung

Die Aktivierung der Schattenabschaltung wird vom ENERCON SCADA Edge Server als Statusmeldung mit Datum, Uhrzeit und Dauer protokolliert und über mehrere Jahre gespeichert.

Bei Bedarf erfolgt eine Protokollierung der gemessenen Daten der Lichtsensorik. Dabei wird das Verhältnis von Schatten- und Lichtintensität als Minutenmittelwert sowie das Minimum und das Maximum des Minutenintervalls und die definierte Abschaltintensität protokolliert.