

Funktionsweise

Für ENERCON Windenergieanlagen stehen neben dem Betriebsmodus 0 bis zu vier weitere Kennlinien (Kennlinien 1 bis 4) zur Verfügung. Diesen Kennlinien können beliebige Betriebsmodi (z. B. Mode I bis IV) zugewiesen werden, um jederzeit die am Standort geltenden Anforderungen in Bezug auf zulässige Schallemissionen zu erfüllen.

Tab. 1: Zuordnung Kennlinie - Betriebsmodus (Beispiel)

Betriebskennlinie	Betriebsmodus
1	Mode IV
2	Mode I
3	Mode III
4	Mode II

Für die Aktivierung der Kennlinien 1 bis 4 können voneinander unabhängig Bedingungen festgelegt werden. Hierfür stehen die folgenden Kriterien zur Verfügung, die beliebig miteinander kombiniert werden können:

- Windrichtungssektor
- Windgeschwindigkeitsbereich
- Zeitraum
- Feiertage

Ist eine der definierten Bedingungen erfüllt, wechselt die Windenergieanlage zu der entsprechenden Kennlinie.

Bei jedem Wechsel der Kennlinie wird eine der folgenden Informationen generiert:

- 232:50 Allgemeine Information : Schalloptimierung deaktiviert
- 232:51 Allgemeine Information : Schalloptimierung 1 aktiviert
- 232:52 Allgemeine Information : Schalloptimierung 2 aktiviert
- 232:53 Allgemeine Information : Schalloptimierung 3 aktiviert
- 232:54 Allgemeine Information : Schalloptimierung 4 aktiviert

Auf diese Weise kann jederzeit nachvollzogen werden, in welchen Zeiträumen die Windenergieanlage schalloptimiert betrieben wurde.

D0180211-3 / DA 1 von 3

Prioritäten und Kombinationen

Sind die Bedingungen für mehr als eine Kennlinie gleichzeitig erfüllt, wird die Kennlinie mit der höchsten Priorität ausgewählt. Dabei hat die Kennlinie 1 die höchste, die Kennlinie 4 die geringste Priorität. Der Wechsel erfolgt gleitend im laufenden Betrieb, ein Anhalten der Windenergieanlage ist nicht erforderlich.

Neben der Definition eines einzelnen Kriteriums lässt die Schalloptimierung der ENERCON Windenergieanlagen eine Kombination der Kriterien Windrichtung, Windgeschwindigkeit und Zeitraum zu. Als Verknüpfungen zwischen den Kriterien können logische Operatoren (UND/ODER) verwendet werden.

Das Kriterium "Feiertage" hat höchste Priorität und kann nicht mit anderen Kriterien verknüpft werden.

Kriterium Windrichtungssektor

Für jede der Kennlinien 1 bis 4 können bis zu drei Windrichtungssektoren definiert werden. Wenn die aktuelle Windrichtung länger als eine festgelegte Verzögerungszeit innerhalb eines dieser Sektoren liegt, wechselt die Windenergieanlage zu der zugewiesenen Kennlinie.

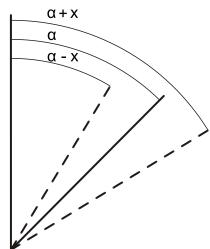


Abb. 1: Definition eines Sektors

Um einen Sektor zu definieren, müssen die Werte für den Winkel α und für die Abweichung x festgelegt werde. Der resultierende Sektor erstreckt sich dann von α -x bis α +x. Die Drehrichtung des Winkels α (0°bis 360°) ist der Uhrzeigersinn, 0° entspricht Windrichtung Nord.

Kriterium Windgeschwindigkeitsbereich

Für jede der Kennlinien I bis IV kann ein Windgeschwindigkeitsbereich (minimale Windgeschwindigkeit bis maximale Windgeschwindigkeit) definiert werden.

Befindet sich die ermittelte Windgeschwindigkeit länger als die festgelegte Verzögerungszeit innerhalb eines der definierten Windgeschwindigkeitsbereiche, wechselt die WEA zu der zugewiesenen Kennlinie.

Kriterium Feiertage

Für jede der Kennlinien 1 bis 4 können bis zu 10 Feiertage definiert werden. An diesen Tagen wechselt die Windenergieanlage für einen definierten Zeitraum zu der zugehörigen Kennlinie. Dieses Kriterium hat die höchste Priorität.

D0180211-3 / DA 2 von 3

Kriterium Zeitraum

Für jede der Kennlinien 1 bis 4 kann am Anlagendisplay ein Zeitraum (Wochentag/Zeit Anfang bis Wochentag/Zeit Ende) definiert werden, während dessen die entsprechende Kennlinie aktiviert wird.

Pro Kennlinie können maximal 14 Zeiträume definiert werden. Die Gesamtzahl der Zeiträume für alle vier Kennlinien ist auf 28 begrenzt.

Tab. 2: Beispiel zeitabhängige Schalloptimierung (Ausschnitt)

Kennlinie	Intervall	Anfang	Ende
1	1	Montag 22:00	Dienstag 06:00
	2	Dienstag 22:00	Mittwoch 06:00
	3	Mittwoch 22:00	Donnerstag 06:00
	14	Sonnabend 0:01	Sonntag 23:59
2	1	Montag 12:00	Montag 14:00
	2	Dienstag 12:00	Dienstag 14:00
	3	Mittwoch 12:00	Mittwoch 14:00
	14	-	-
3			
4			

© Copyright ENERCON GmbH. Alle Rechte vorbehalten.

Technische Beschreibung

Schallreduzierung ENERCON Platform Independent Control System (PI-CS)

Herausgeber

ENERCON Global GmbH = Dreekamp 5 = 26605 Aurich = Deutschland

Telefon: +49 4941 927-0 • Telefax: +49 4941 927-109 E-Mail: info@enercon.de • Internet: http://www.enercon.de Geschäftsführer: Uwe Eberhardt, Ulrich Schulze Südhoff

Zuständiges Amtsgericht: Aurich - Handelsregisternummer: HRB 202549

Ust.ld.-Nr.: DE285537483

Urheberrechtshinweis

Die Inhalte dieses Dokuments sind urheberrechtlich sowie hinsichtlich der sonstigen geistigen Eigentumsrechte durch nationale und internationale Gesetze und Verträge geschützt. Die Rechte an den Inhalten dieses Dokuments liegen bei der ENERCON Global GmbH, sofern und soweit nicht ausdrücklich ein anderer Inhaber angegeben oder offensichtlich erkennbar ist.

Die ENERCON Global GmbH räumt dem Verwender das Recht ein, zu Informationszwecken für den eigenen, rein unternehmensinternen Gebrauch Kopien und Abschriften dieses Dokuments zu erstellen; weitergehende Nutzungsrechte werden dem Verwender durch die Bereitstellung dieses Dokuments nicht eingeräumt. Jegliche sonstige Vervielfältigung, Veränderung, Verbreitung, Veröffentlichung, Weitergabe, Überlassung an Dritte und/oder Verwertung der Inhalte dieses Dokuments ist – auch auszugsweise – ohne vorherige, ausdrückliche und schriftliche Zustimmung der ENERCON Global GmbH untersagt, sofern und soweit nicht zwingende gesetzliche Vorschriften ein Solches gestatten.

Dem Verwender ist es untersagt, für das in diesem Dokument wiedergegebene Know-how oder Teile davon gewerbliche Schutzrechte gleich welcher Art anzumelden

Sofern und soweit die Rechte an den Inhalten dieses Dokuments nicht bei der ENERCON Global GmbH liegen, hat der Verwender die Nutzungsbestimmungen des jeweiligen Rechteinhabers zu beachten.

Geschützte Marken

Alle in diesem Dokument ggf. genannten Marken- und Warenzeichen sind geistiges Eigentum der jeweiligen eingetragenen Inhaber; die Bestimmungen des anwendbaren Kennzeichen- und Markenrechts gelten uneingeschränkt.

Änderungsvorbehalt

Die ENERCON Global GmbH behält sich vor, dieses Dokument und den darin beschriebenen Gegenstand jederzeit ohne Vorankündigung zu ändern, insbesondere zu verbessern und zu erweitern, sofern und soweit vertragliche Vereinbarungen oder gesetzliche Vorgaben dem nicht entgegenstehen.

Dokumentinformation

Dokument-ID	D02533651/4.0-de
Vermerk	Originaldokument

Datum	Sprache	DCC	Werk / Abteilung
2025-01-22	de	DB	WRD Wobben Research and Development GmbH / Documentation Department

Inhaltsverzeichnis

1	Einle	eitung	4
2	Beei	nflussung von Schallreduzierung und Sektormanagement	5
3	Funk	ktionsweise	6
	3.1	Bedingungstypen	7
	3.1.1	Tageszeitraum	7
	3.1.2	Wochentag/Zeitraum	8
	3.1.3	Windrichtungssektor	8
	3.1.4	Windgeschwindigkeitsbereich	9
	3.1.5	Datumsperiode	9
	3.1.6	Regen	10
	3.1.7	Max. Temperatur	10
	3.1.8	Externes Signal	10
	3.1.9	Digitaler Hardware-Eingang	10
	3.2	Toggle-Modus	11
	3.2.1	Allgemein	11
	3.2.2	Pausenmechanismus	11
	3.2.3	Kontrolle der Stopp-Periode	11
4	Para	meter	12
	4.1	Aktivierung der Schallreduzierung	12
	4.2	Aktivierung von Gruppe X	12
	4.3	Schallbetriebsmodus Gruppe X	12
	4.4	Tageszeitraum	13
	4.5	Wochentag/Zeitraum	14
	4.6	Windrichtungssektor	15
	4.7	Windgeschwindigkeitsbereich	16
	4.8	Datumsperiode	17
	4.9	Regen	18
	4.10	Max. Temperatur	19
	4.11	Externes Signal	20
	4.12	Digitaler Hardware-Eingang	20
	4.13	Toggle-Modus	20
5	Statu	usmeldungen	23

1 Einleitung

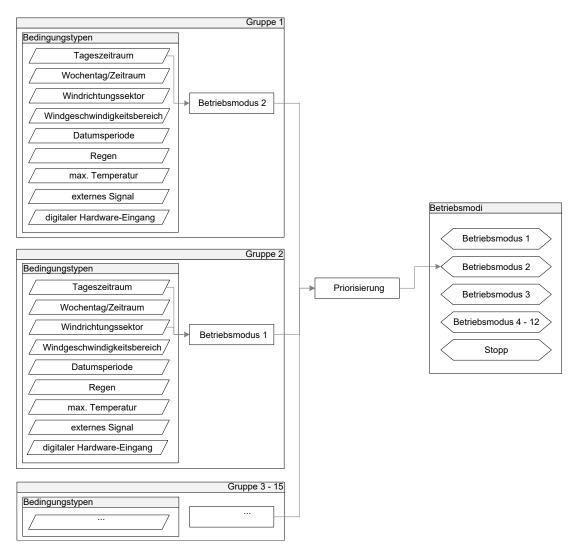
Für ENERCON Windenergieanlagen stehen verschiedene schallreduzierte Betriebsmodi zur Verfügung. Bei Betrieb in einem schallreduzierten Betriebsmodus wird die Drehzahl der Windenergieanlage reduziert, wodurch die Schallemission der Windenergieanlage abnimmt. Die schallreduzierten Betriebsmodi unterscheiden sich in der Intensität der Schallreduktion und erfüllen jederzeit die am Standort geltenden Anforderungen in Bezug auf zulässige Schallemissionen.

Dieses Dokument ist gültig für ENERCON Windenergieanlagen mit folgendem Steuerungstyp:

■ PI-CS

2 Beeinflussung von Schallreduzierung und Sektormanagement

Die Schallreduzierung und das Sektormanagement können sich gegenseitig beeinflussen.


Tab. 1: Beeinflussung von Schallreduzierung und Sektormanagement

Begrenzung	Einfluss	Priorität
Minimaler Blattwinkel	SchallreduzierungSektormanagement	Höchster angeforderter mini- maler Blattwinkel
Maximale Rotordrehzahl	 Schallreduzierung Sektormanagement Generatorheizung während eines Betriebszustands Parameter für manuelle Grenze Parameter für manuellen Freilauf 	Niedrigste angeforderte ma- ximale Rotordrehzahl
Maximale Wirkleistung	SchallreduzierungSektormanagement	Niedrigste angeforderte ma- ximale Wirkleistung
Betriebsmodus	SchallreduzierungSektormanagement	Priorität 1: Sektormanagement Priorität 2: Schallreduzierung

D02533651/4.0-de / DB 5 von 23

3 Funktionsweise

Abb. 1: Funktionsweise der Schallreduzierung

Zur Schallreduzierung stehen 12+1 Betriebsmodi zur Verfügung (12 Betriebsmodi, 1 Stopp).

Die verschiedenen Bedingungstypen werden zu einer Gruppe zusammengefasst. Die Gruppen werden den Betriebsmodi zugewiesen.

Es können insgesamt 15 Gruppen mit jeweils 9 Bedingungstypen parametriert werden.

Falls die Bedingungen für mehr als 1 Gruppe erfüllt sind, besitzt Gruppe 1 die höchste Priorität und Gruppe 15 die niedrigste.

3.1 Bedingungstypen

Ein Bedingungstyp besteht aus einer oder mehreren Einzelbedingungen. Die Einzelbedingungen werden über Parameter für jede Windenergieanlage eingestellt.

Wenn die Parameter einer Einzelbedingung auf den gleichen Wert eingestellt werden, ist diese Einzelbedingung deaktiviert (Ausnahme = Datumsperiode).

Damit ein Bedingungstyp ausgewertet wird, muss dieser durch einen Parameter aktiviert werden.

Folgende Bedingungstypen können ausgewählt werden:

- Tageszeitraum
- Wochentag/Zeitraum
- Windrichtungssektor
- Windgeschwindigkeitsbereich
- Datumsperiode
- Regen
- max. Temperatur
- externes Signal
- digitaler Hardware-Eingang

3.1.1 Tageszeitraum

Über den Bedingungstyp *Tageszeitraum* kann ein schallreduzierter Betriebsmodus über einen Zeitraum aktiviert werden.

Die Einzelbedingung ist erfüllt, wenn die Uhrzeit innerhalb des parametrierten Zeitraums liegt.

Es können 2 Zeiträume pro Gruppe festgelegt werden.

Tab. 2: Beispiel Tageszeitraum

Gruppe	Startzeit	Endzeit
1	22:00 Uhr	06:00 Uhr
	13:00 Uhr	15:00 Uhr
2	22:00 Uhr	06:00 Uhr
	00:00 Uhr	00:00 Uhr

D02533651/4.0-de / DB 7 von 23

3.1.2 Wochentag/Zeitraum

Über den Bedingungstyp *Wochentag/Zeitraum* kann ein schallreduzierter Betriebsmodus über einen Wochentag und einen Zeitraum aktiviert werden.

Die Einzelbedingung ist erfüllt, wenn die Uhrzeit innerhalb des parametrierten Zeitraums liegt.

Es kann 1 Wochentag und Zeitraum pro Gruppe festgelegt werden.

Tab. 3: Beispiel Wochentag/Zeitraum

Gruppe	Startzeit	Endzeit
1	Freitag 18:00 Uhr	Montag 06:00 Uhr
2	Mittwoch 18:00 Uhr	Donnerstag 06:00 Uhr

3.1.3 Windrichtungssektor

Über den Bedingungstyp *Windrichtungssektor* kann ein schallreduzierter Betriebsmodus über einen Windrichtungssektor aktiviert werden.

Die Einzelbedingung ist erfüllt, wenn die Gondelposition innerhalb des parametrierten Windrichtungssektors liegt und die Verzögerungszeit abgelaufen ist.

Die Einzelbedingung ist nicht mehr erfüllt, wenn die Gondelposition außerhalb des parametrierten Windrichtungssektors liegt und die Verzögerungszeit abgelaufen ist.

Es können 3 Windrichtungssektoren pro Gruppe festgelegt werden.

Die Anfangs- und Endwinkel werden als 1-s-Mittelwert gemessen.

Tab. 4: Beispiel Windrichtungssektor

Gruppe	Anfangswinkel	Endwinkel	Verzögerungszeit
1	30°	60° 120 s	120 s
	80°	105°	
	0°	0°	
2	310°	15°	
	195°	270°	
	0°	0°	

3.1.4 Windgeschwindigkeitsbereich

Über den Bedingungstyp *Windgeschwindigkeitsbereich* kann ein schallreduzierter Betriebsmodus über einen Windgeschwindigkeitsbereich aktiviert werden.

Die Einzelbedingung ist erfüllt, wenn die Windgeschwindigkeit innerhalb des parametrierten Windgeschwindigkeitsbereichs liegt und die Verzögerungszeit abgelaufen ist.

Die Einzelbedingung ist nicht mehr erfüllt, wenn die Windgeschwindigkeit außerhalb des parametrierten Windgeschwindigkeitsbereichs liegt und die Verzögerungszeit abgelaufen ist.

Es kann 1 Windgeschwindigkeitsbereich pro Gruppe festgelegt werden.

Die Anfangs- und Endwindgeschwindigkeit werden als 1-min-Mittelwert gemessen.

Tab. 5: Beispiel Windgeschwindigkeitsbereich

Gruppe	Anfangswindge- schwindigkeit	Endwindgeschwindig- keit	Verzögerungszeit
1	4,5 m/s	5,5 m/s	120 s
2	5,5 m/s	6,5 m/s	

3.1.5 Datumsperiode

Über den Bedingungstyp *Datumsperiode* kann ein schallreduzierter Betriebsmodus über eine Datumsperiode aktiviert werden.

Um einen einzelnen Tag zu parametrieren, muss für die Start- und Endzeit das gleiche Datum eingetragen und die jeweilige Einzelbedingung aktiviert werden.

Die Einzelbedingung ist erfüllt, wenn das Datum innerhalb der parametrierten Datumsperiode liegt.

Es können 3 Datumsperioden pro Gruppe festgelegt werden.

Der Bedingungstyp sollte nur zusammen mit anderen Bedingungstypen, die die Grundbedingungen (z. B. Tageszeitraum) definieren, verwendet werden.

Tab. 6: Beispiel Datumsperiode

Gruppe	Startzeit	Endzeit
1	01.05.	30.09.
	01.10.	01.04.
	01.01.	01.01.
2	01.06.	30.08.
	01.09.	01.04.
	01.01.	01.01.

D02533651/4.0-de / DB 9 von 23

3.1.6 **Regen**

Über den Bedingungstyp *Regen* kann der schallreduzierte Betriebsmodus über die Intensität des Regens deaktiviert werden.

Die Einzelbedingung ist erfüllt, wenn die Regenintensität oberhalb des parametrierten Regenschwellwerts liegt und die Verzögerungszeit abgelaufen ist.

Die Einzelbedingung ist nicht mehr erfüllt, wenn die Regenintensität unterhalb des parametrierten Regenschwellwerts liegt und die Verzögerungszeit abgelaufen ist.

Es kann 1 Regenintensität für alle Gruppen festgelegt werden.

Der Bedingungstyp sollte nur zusammen mit anderen Bedingungstypen, die die Grundbedingungen (z. B. Tageszeitraum) definieren, verwendet werden.

Tab. 7: Beispiel Regen

Gruppe	Intensität	Verzögerungszeit
-	0,15 mm/min	60 s

3.1.7 Max. Temperatur

Über den Bedingungstyp *max. Temperatur* kann ein schallreduzierter Betriebsmodus über eine max. Temperatur aktiviert werden.

Die Einzelbedingung ist erfüllt, sobald die Außentemperatur (1-Minuten-Mittelwert) innerhalb des parametrierten Messintervalls oberhalb der parametrierten max. Temperatur liegt. Die Einzelbedingung bleibt bis zum Startzeitpunkt des nächsten Messintervalls erfüllt.

Es kann 1 max. Temperatur für alle Gruppen festgelegt werden.

Der Bedingungstyp sollte nur zusammen mit anderen Bedingungstypen, die die Grundbedingungen (z. B. Tageszeitraum) definieren, verwendet werden.

Tab. 8: Beispiel max. Temperatur

Gr	ruppe	Max. Temperatur	Startzeitpunkt des Messintervalls	Endzeit des Messinter- valls
-		30 °C	21:00 Uhr	06:00 Uhr

3.1.8 Externes Signal

Über den Bedingungstyp *externes Signal* kann ein schallreduzierter Betriebsmodus über ein externes Signal (z. B. ENERCON SCADA) aktiviert werden.

Es kann 1 externes Signal pro Gruppe festgelegt werden.

3.1.9 Digitaler Hardware-Eingang

Über den Bedingungstyp *digitaler Hardware-Eingang* kann ein schallreduzierter Betriebsmodus über ein digitales Hardware-Signal aktiviert werden. Der digitale Hardware-Eingang kann als Öffner- oder Schließerkontakt konfiguriert werden.

Für jede Gruppe kann individuell festgelegt werden, ob der digitale Hardware-Eingang berücksichtigt werden soll.

3.2 Toggle-Modus

3.2.1 Allgemein

Der Toggle-Modus ist speziell für Messkampagnen vorgesehen. Dieser Modus kombiniert eine Abfolge von Aktionen, um eine optimale Datenerfassung unter Berücksichtigung vorher festgelegter Parameter und Bedingungen zu gewährleisten.

Wenn er über die HMI aktiviert wird, startet der Toggle-Modus einen strukturierten Prozess. Er durchläuft 5 definierte Betriebsmodi, die durch einen Parameter festgelegt werden. Jede Iteration des Betriebsmodus folgt einem durch den Parameter definierten Zeitraum, um eine konsistente Datenerfassung zu gewährleisten.

Die Anzahl der nachfolgenden Wiederholungen für die 5 Betriebsmodi wird durch einen weiteren Parameter geregelt, gefolgt von einer kontrollierten Stopp-Periode, die durch eine parametrisch festgelegte Zeitspanne gekennzeichnet ist. Dieser wiederholende Prozess von Messungen und Stopps wird auf unbestimmte Zeit fortgesetzt und ermöglicht eine ununterbrochene Datenerfassung.

Ein fortschrittlicher Aspekt des Toggle-Modus ist das parametergesteuerte Auslösen von Messintervallen pro definierten Betriebsmodus oder Stopp-Wiederholungen.

Ist der Parameter beispielsweise auf 10 Minuten eingestellt, wird das nachfolgende Messintervall an das nächstgelegene 10-Minuten-Zeitfenster angepasst und für die angegebene parametrische Dauer beibehalten.

Der Toggle-Modus kann nur über eine HMI-Taste deaktiviert werden. Durch Betätigen dieser Taste wird nicht nur der Toggle-Modus beendet, sondern es werden auch alle mit dem Toggle-Modus verbundenen internen Zähler zurückgesetzt.

3.2.2 Pausenmechanismus

Der Toggle-Modus beinhaltet einen Pausenmechanismus, der durch bestimmte Bedingungen ausgelöst wird.

Der Pausenmechanismus wird ausgelöst, wenn eine der parametrierten schallreduzierten Gruppen (1-15) aktiv ist und ein Betriebsmodus angefordert wird oder die Gondelposition sich außerhalb der vordefinierten Start- und Stoppgrenzen des Sektors befindet.

Dieser pausierte Zustand wird durch eine Statusanzeige signalisiert. Sobald die genannten Bedingungen nicht mehr erfüllt sind, nimmt der Toggle-Modus seinen Betrieb wieder auf.

3.2.3 Kontrolle der Stopp-Periode

Der Toggle-Modus beinhaltet einen Mechanismus zur Kontrolle der Stopp-Periode. Wenn die Stopp-Periode für einen bestimmten Prozentsatz der konfigurierten Stoppzeit aktiv bleibt, bevor der Toggle-Modus unterbrochen wird, wird die Stopp-Periode nach der Pause nicht erneut ausgelöst. Liegt die Dauer der Stopp-Periode jedoch unter diesem Schwellenwert, wird sie nach einer Pause erneut ausgelöst, um einen Mindestprozentsatz der konfigurierten Stopp-Periode zu gewährleisten.

D02533651/4.0-de / DB 11 von 23

4 Parameter

4.1 Aktivierung der Schallreduzierung

Parameter: WAVL1/Snd1/ActSnd (Activate sound reduction)

Gibt an, ob der schallreduzierte Betrieb aktiviert oder deaktiviert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

4.2 Aktivierung von Gruppe X

Parameter: WAVL1/Snd1/ActGrX (Activate group X)

Gibt an, ob die Gruppe X (X = 1 - 15) aktiviert oder deaktiviert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

4.3 Schallbetriebsmodus Gruppe X

Parameter: WAVL1/Snd1/OpModGrX (Operating mode group X)

Gibt an, welcher Schallbetriebsmodus für die Gruppe X (X = 1 - 15) ausgeführt wird.

Einstellung	Beschreibung
0	kein schallreduzierter Betrieb
1	Schallbetriebsmodus 1
2	Schallbetriebsmodus 2
3	Schallbetriebsmodus 3
4	Schallbetriebsmodus 4
5	Schallbetriebsmodus 5
6	Schallbetriebsmodus 6
7	Schallbetriebsmodus 7
8	Schallbetriebsmodus 8
9	Schallbetriebsmodus 9
10	Schallbetriebsmodus 10
11	Schallbetriebsmodus 11
12	Schallbetriebsmodus 12
99	Windenergieanlage anhalten

Einstellmöglichkeiten	Standard
0 - 99	0

4.4 Tageszeitraum

Aktivierung Tageszeit Gruppe X

Parameter: WAVL1/Snd1/ActDayTmGrX (Activate daily time group X)

Gibt an, ob der Bedingungstyp *Tageszeitraum* für die Gruppe X (X = 1 - 15) aktiviert oder deaktiviert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

Tages-Startzeit i Gruppe X

Parameter: WAVL1/Snd1/StrDayTmiGrX (Start daily time i group X)

Gibt die Aktivierungszeit für den Bedingungstyp *Tageszeitraum* für die Gruppe X (X = 1 - 15) an.

Pro Gruppe können 2 Startzeiten (i = 1, 2) parametriert werden.

Einstellmöglichkeiten	Standard
00:00 – 23:59 Uhr	00:00 Uhr

Tages-Stoppzeit i Gruppe X

Parameter: WAVL1/Snd1/StopDayTmiGrX (Stop daily time i group X)

Gibt die Deaktivierungszeit für den Bedingungstyp *Tageszeitraum* für die Gruppe X (X = 1 - 15) an.

Pro Gruppe können 2 Endzeiten (i = 1, 2) parametriert werden.

Einstellmöglichkeiten	Standard
00:00 – 23:59 Uhr	00:00 Uhr

D02533651/4.0-de / DB 13 von 23

4.5 Wochentag/Zeitraum

Aktivierung Wochentags-Periode Gruppe X

Parameter: WAVL1/Snd1/ActWeekDayGrX (Activate weekday group X)

Gibt an, ob der Bedingungstyp *Wochentag/Zeitraum* für die Gruppe X (X = 1 - 15) aktiviert oder deaktiviert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

Wochentag Startzeit Gruppe X

Parameter: WAVL1/Snd1/StrWeekDayTmGrX (Start weekday time group X)

Gibt die Aktivierungszeit für den Bedingungstyp *Wochentag/Zeitraum* für die Gruppe X (X = 1 - 15) an.

Einstellmöglichkeiten	Standard
Montag 00:00 – Sonntag 23:59 Uhr	Montag 00:00 Uhr

Wochentag Stoppzeit Gruppe X

Parameter: WAVL1/Snd1/StopWeekDayTmGrX (Stop weekday time group X)

Gibt die Deaktivierungszeit für den Bedingungstyp *Wochentag/Zeitraum* für die Gruppe X (X = 1 - 15) an.

Einstellmöglichkeiten	Standard
Montag 00:00 – Sonntag 23:59 Uhr	Montag 00:00 Uhr

4.6 Windrichtungssektor

Aktivierung Windrichtungssektor Gruppe X

Parameter: WAVL1/Snd1/ActNacPosGrX (Activate nacelle position group X)

Gibt an, ob der Bedingungstyp Windrichtungssektor für die Gruppe X (X = 1 - 15) aktiviert oder deaktiviert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

Start Sektor i Gruppe X

Parameter: WAVL1/Snd1/StrNacPosiGrX (Start nacelle position i group X)

Gibt den Anfangswinkel für den Bedingungstyp *Windrichtungssektor* für die Gruppe X (X = 1 - 15) an.

Pro Gruppe können 3 Anfangswinkel (i = 1 - 3) parametriert werden.

Einstellmöglichkeiten	Standard
0° – 359°	0°

Ende Sektor i Gruppe X

Parameter: WAVL1/Snd1/StopNacPosiGrX (Stop nacelle position i group X)

Gibt den Endwinkel für den Bedingungstyp *Windrichtungssektor* für die Gruppe X (X = 1 - 15) an.

Pro Gruppe können 3 Endwinkel (i = 1 - 3) parametriert werden.

Einstellmöglichkeiten	Standard
0° – 359°	0°

Verzögerungszeit Sektor

Parameter: WAVL1/Snd1/NacPosTmDI (Nacelle position time delay)

Gibt die Verzögerungszeit für alle Einzelbedingungen des Bedingungstyps *Windrichtungs-sektor* an.

Einstellmöglichkeiten	Standard
30 s - 600 s	120 s

D02533651/4.0-de / DB 15 von 23

4.7 Windgeschwindigkeitsbereich

Aktivierung Windgeschwindigkeitsbereich Gruppe X

Parameter: WAVL1/Snd1/ActWdSpdGrX (Activate wind speed group X)

Gibt an, ob der Bedingungstyp *Windgeschwindigkeitsbereich* für die Gruppe X (X = 1 - 15) aktiviert oder deaktiviert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

Start Windgeschwindigkeit Gruppe X

Parameter: WAVL1/Snd1/StrWdSpdGrX (Start wind speed group X)

Gibt die Startwindgeschwindigkeit für den Bedingungstyp Windgeschwindigkeitsbereich für die Gruppe X (X = 1 - 15) an.

Einstellmöglichkeiten	Standard
0 m/s - 50 m/s	0 m/s

Stoppwindgeschwindigkeit Gruppe X

Parameter: WAVL1/Snd1/StopWdSpdGrX (Stop wind speed group X)

Gibt die Stoppwindgeschwindigkeit für den Bedingungstyp Windgeschwindigkeitsbereich für die Gruppe X (X = 1 - 15) an.

Einstellmöglichkeiten	Standard
0 m/s - 50 m/s	0 m/s

Verzögerungszeit Windgeschwindigkeit

Parameter: WAVL1/Snd1/WdSpdTmDl (Wind speed time delay)

Gibt die Verzögerungszeit für alle Einzelbedingungen des Bedingungstyps *Windgeschwindigkeitsbereich* an.

Einstellmöglichkeiten	Standard
10 s – 600 s	120 s

4.8 Datumsperiode

Aktivierung Datumsperiode i Gruppe X

Parameter: WAVL1/Snd1/ActDatePeriGrX (Activate date period i group X)

Gibt an, ob die Einzelbedingung (i = 1 - 3) des Bedingungstyp *Datumsperiode* für die Gruppe X (X = 1 - 15) aktiviert oder deaktiviert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

Datumsperiode Starttag i Gruppe X

Parameter: WAVL1/Snd1/StrDatePeriGrX (Start date period i group X)

Gibt den Starttag für den Bedingungstyp *Datumsperiode* für die Gruppe X (X = 1 - 15) an.

Pro Gruppe können 3 Starttage (i = 1 - 3) parametriert werden.

Einstellmöglichkeiten	Standard
01.01. – 31.12.	01.01.

Datumsperiode Endtag i Gruppe X

Parameter: WAVL1/Snd1/StopDatePeriGrX (Stop date period i group X)

Gibt den Endtag für den Bedingungstyp *Datumsperiode* für die Gruppe X (X = 1 - 15) an.

Pro Gruppe können 3 Endtage (i = 1 - 3) parametriert werden.

Einstellmöglichkeiten	Standard
01.01. – 31.12.	01.01.

D02533651/4.0-de / DB 17 von 23

4.9 Regen

Aktivierung Regen Gruppe X

Parameter: WAVL1/Snd1/ActRnGrX (Activate rain group X)

Gibt an, ob der Bedingungstyp Regen für die Gruppe X (X = 1 – 15) aktiviert oder deakti-

viert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

Regenschwellwert

Parameter: WAVL1/Snd1/RnLim (Rain limit)

Gibt die Deaktivierungsschwelle für den Bedingungstyp Regen für alle Gruppen an.

Einstellmöglichkeiten	Standard
0,07 mm/min – 9,99 mm/min	0,15 mm/min

Verzögerungszeit Regen

Parameter: WALV1/Snd1/RnTmDI (Rain time delay)

Gibt die Verzögerungszeit des Bedingungstyps Regen an.

Einstellmöglichkeiten	Standard
10 s – 600 s	60 s

4.10 Max. Temperatur

Aktivierung max. Temperatur Gruppe X

Parameter: WAVL1/Snd1/ActTmpGrX (Activate temperature group X)

Gibt an, ob der Bedingungstyp max. Temperatur für die Gruppe X (X = 1 – 15) aktiviert oder deaktiviert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

Temperaturschwellwert

Parameter: WAVL1/Snd1/TmpLim (Temperature limit)

Gibt den Schwellwert für den Bedingungstyp max. Temperatur für alle Gruppen an.

Einstellmöglichkeiten	Standard
-30 °C – 50 °C	40 °C

Start Messintervall

Parameter: WAVL1/Snd1/StrTmpMeasDayTm (Start temperature measurement daily time)

Gibt den Startzeitpunkt des Messintervalls für den Bedingungstyp *max. Temperatur* für alle Gruppen an.

Einstellmöglichkeiten	Standard
00:00 Uhr – 23:59 Uhr	00:00 Uhr

Ende Messintervall

Parameter: WAVL1/Snd1/StopTmpMeasDayTm (Stop temperature measurement daily time)

Gibt den Endzeitpunkt des Messintervalls für den Bedingungstyp *max. Temperatur* für alle Gruppen an.

Einstellmöglichkeiten	Standard
00:00 Uhr – 23:59 Uhr	00:00 Uhr

D02533651/4.0-de / DB 19 von 23

4.11 Externes Signal

Aktivierung externes Signal Gruppe X

Parameter: WAVL1/Snd1/ActExSigGrX (Activate external signal group X)

Gibt an, ob der Bedingungstyp *externes Signal* für die Gruppe X (X = 1 - 15) aktiviert oder deaktiviert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

4.12 Digitaler Hardware-Eingang

Aktivierung digitaler Hardware-Eingang Gruppe X

Parameter: WAVL1/Snd1/ActDigSigGrX (Activate digital signal group X)

Gibt an, ob der Bedingungstyp *digitaler Hardware-Eingang* für die Gruppe X (X = 1 - 15) aktiviert oder deaktiviert ist.

Einstellmöglichkeiten	Standard
ein/aus	aus

Kontakttyp Externer Stopp

Parameter: WTUR1/Tur1.ExStopSwParam (External stop switch parameter)

Gibt an, ob der digitale Hardware-Eingang als Öffner- oder Schließerkontakt konfiguriert ist.

Einstellmöglichkeiten	Standard
ein = Schließerkontakt	ein
aus = Öffnerkontakt	

4.13 Toggle-Modus

Parameter: *LoLimOpModAutoChg* Untere Grenze Gondel/Sektor.

Einstellmöglichkeiten	Standard
0° – 360°	340°

Parameter: *HiLimOpModAutoChg* Obere Grenze Gondel/Sektor.

Einstellmöglichkeiten	Standard
0° – 360°	20°

Parameter: StrCntOpModAutoChg

Startzählerwert für den Toggle-Modus. Die Einstellung dieses Wert auf 10min (10*60s), bedeutet die Messung Zeitraum für den nächsten Betriebsmodus beginnt mit der nächsten 10-Minuten-Zeitraum z.B. 05:20.

Einstellmöglichkeiten	Standard
0 - 60*60 s	10*60 s

Parameter: NumOpModAutoChg

Anzahl der Toggle-Modus-Gruppeniterationen, bevor ein Stopp ausgeführt wird.

Einstellmöglichkeiten	Standard
0 – 100	3

Parameter: MeasDurOpModAutoChg

Messung Dauer pro Betriebsmodus, während der Toggle-Modus aktiv ist.

Einstellmöglichkeiten	Standard
0 s – 24*60*60 s	10*60 s

Parameter: StopMeasDurOpModAutoChg

Messung Dauer pro Stopp, während der Toggle-Modus aktiv ist.

Einstellmöglichkeiten	Standard
0 s – 24*60*60 s	10*60 s

Parameter: StopDurLimOpModAutoChg

Schwellenwert Prozentsatz für eine Mindeststoppdauer im Toggle-Modus. Wenn der Stopp für mindestens diesen Schwellenwert aktiv ist, wird er nicht wiederholt nach einer Pause des Toggle-Modus.

Einstellmöglichkeiten	Standard
0 % – 100 %	70 %

D02533651/4.0-de / DB 21 von 23

Parameter: OpModAutoChgY

Betriebsmodus Aktion wird ausgeführt, wenn der Toggle-Modus aktiv ist und die Bedingungen erfüllt sind.

Einstellung	Beschreibung
0	kein schallreduzierter Betriebsmodus
1	Schallbetriebsmodus 1
2	Schallbetriebsmodus 2
3	Schallbetriebsmodus 3
4	Schallbetriebsmodus 4
5	Schallbetriebsmodus 5
6	Schallbetriebsmodus 6
7	Schallbetriebsmodus 7
8	Schallbetriebsmodus 8
9	Schallbetriebsmodus 9
10	Schallbetriebsmodus 10
11	Schallbetriebsmodus 11
12	Schallbetriebsmodus 12
99	Windenergieanlage anhalten

Einstellmöglichkeiten	Standard
0 – 99	0

ENERCON ENERGIE FÜR DIE WELT

5 Statusmeldungen

Tab. 9: Statusmeldungen

Тур	Nr.	Name	Beschreibung / Grund	Ausgelöste An- halteprozedur
I	6:1	Schallreduzierung : Betriebsmodus 1	Die Schallreduzierung hat den Betriebsmodus 1 angefordert.	-
I	6:2	Schallreduzierung : Betriebsmodus 2	Die Schallreduzierung hat den Betriebsmodus 2 angefordert.	-
I	6:3	Schallreduzierung : Betriebsmodus 3	Die Schallreduzierung hat den Betriebsmodus 3 angefordert.	-
I	6:4	Schallreduzierung : Betriebsmodus 4	Die Schallreduzierung hat den Betriebsmodus 4 angefordert.	-
I	6:5	Schallreduzierung : Betriebsmodus 5	Die Schallreduzierung hat den Betriebsmodus 5 angefordert.	-
I	6:6	Schallreduzierung : Betriebsmodus 6	Die Schallreduzierung hat den Betriebsmodus 6 angefordert.	-
I	6:7	Schallreduzierung : Betriebsmodus 7	Die Schallreduzierung hat den Betriebsmodus 7 angefordert.	-
I	6:8	Schallreduzierung : Betriebsmodus 8	Die Schallreduzierung hat den Betriebsmodus 8 angefordert.	-
I	6:9	Schallreduzierung : Betriebsmodus 9	Die Schallreduzierung hat den Betriebsmodus 9 angefordert.	-
I	6:10	Schallreduzierung : Betriebsmodus 10	Die Schallreduzierung hat den Betriebsmodus 10 angefordert.	-
I	6:11	Schallreduzierung : Betriebsmodus 11	Die Schallreduzierung hat den Betriebsmodus 11 angefordert.	-
I	6:12	Schallreduzierung : Betriebsmodus 12	Die Schallreduzierung hat den Betriebsmodus 12 angefordert.	-
I	6:13	Schallreduzierung : Windenergieanlage angehalten	Die Schallreduzierung hat das Anhalten der Windenergieanlage angefordert.	Standard stop

Technische Beschreibung

Sektormanagement ENERCON Control System (CS48, CS82, CS101, CS126, EP3-CS-02, EP4-CS-01)

Herausgeber ENERCON GmbH - Dreekamp 5 - 26605 Aurich - Deutschland

Telefon: +49 4941 927-0 • Telefax: +49 4941 927-109 E-Mail: info@enercon.de • Internet: http://www.enercon.de

Geschäftsführer: Dr. Jürgen Zeschky, Dr. Martin Prillmann, Dr. Michael Jaxy Zuständiges Amtsgericht: Aurich • Handelsregisternummer: HRB 411

Ust.ld.-Nr.: DE 181 977 360

Urheberrechtshinweis

Die Inhalte dieses Dokuments sind urheberrechtlich sowie hinsichtlich der sonstigen geistigen Eigentumsrechte durch nationale und internationale Gesetze und Verträge geschützt. Die Rechte an den Inhalten dieses Dokuments liegen bei der ENERCON GmbH, sofern und soweit nicht ausdrücklich ein anderer Inhaber angegeben oder offensichtlich erkennbar ist.

Die ENERCON GmbH räumt dem Verwender das Recht ein, zu Informationszwecken für den eigenen, rein unternehmensinternen Gebrauch Kopien und Abschriften dieses Dokuments zu erstellen; weitergehende Nutzungsrechte werden dem Verwender durch die Bereitstellung dieses Dokuments nicht eingeräumt. Jegliche sonstige Vervielfältigung, Veränderung, Verbreitung, Veröffentlichung, Weitergabe, Überlassung an Dritte und/oder Verwertung der Inhalte dieses Dokuments ist – auch auszugsweise – ohne vorherige, ausdrückliche und schriftliche Zustimmung der ENERCON GmbH untersagt, sofern und soweit nicht zwingende gesetzliche Vorschriften ein Solches gestatten.

Dem Verwender ist es untersagt, für das in diesem Dokument wiedergegebene Know-how oder Teile davon gewerbliche Schutzrechte gleich welcher Art anzumelden

Sofern und soweit die Rechte an den Inhalten dieses Dokuments nicht bei der ENERCON GmbH liegen, hat der Verwender die Nutzungsbestimmungen des jeweiligen Rechteinhabers zu beachten.

Geschützte Marken

Alle in diesem Dokument ggf. genannten Marken- und Warenzeichen sind geistiges Eigentum der jeweiligen eingetragenen Inhaber; die Bestimmungen des anwendbaren Kennzeichen- und Markenrechts gelten uneingeschränkt.

Änderungsvorbehalt

Die ENERCON GmbH behält sich vor, dieses Dokument und den darin beschriebenen Gegenstand jederzeit ohne Vorankündigung zu ändern, insbesondere zu verbessern und zu erweitern, sofern und soweit vertragliche Vereinbarungen oder gesetzliche Vorgaben dem nicht entgegenstehen.

Dokumentinformation

Dokument-ID	D0232855/10.0-de
Vermerk	Originaldokument

Datum	Sprache	DCC	Werk / Abteilung
2022-08-02	de	DB	WRD Wobben Research and Development GmbH / Technische Redaktion

Inhaltsverzeichnis

1	Alla	emeines	4
2	Para	ametrierung der Sektoren	5
_	_		_
3	Durc	chfahren von Sektorgrenzen	7
4	Anzo	eige des aktuellen Zustands	8
	4.1	Zustand der sektoriellen Abregelung	8
	4.2	Betriebsstundenzähler für den leistungsbegrenzten Betrieb	9
	4.3	Zustand des sektoriellen Anhaltens	10
5	Dok	umentation	11
6	Sch	allleistungspegel	13
7	Eisa	ınsatzerkennung	14
	Fact	hwortverzeichnis	15

1 Allgemeines

Das Sektormanagement ist eine Standardfunktion der ENERCON Windenergieanlage, die Windenergieanlage abhängig von Windgeschwindigkeiten und Gondelpositionen abregelt oder anhält (Trudelbetrieb).

Anwendungsmöglichkeiten des Sektormanagements:

- Reduzierung von Turbulenzen, die von der Windenergieanlage erzeugt werden und zu unerwünschten Lasten an den sich in Windrichtung dahinter befindlichen Windenergieanlagen führen können (Wake-Effekt)
- Reduzierung von Belastungen der Windenergieanlage zum Schutz besonderer Objekte (z. B. Gasleitungen, Tanks)

Aufgrund der resultierenden Ertragseinbußen wird empfohlen, die Notwendigkeit des Sektormanagements standortbezogen zu prüfen.

Dieses Dokument ist gültig für ENERCON Windenergieanlagen mit folgenden Steuerungstypen:

CS48, CS82, CS101, CS126, EP3-CS-02, EP4-CS-01

2 Parametrierung der Sektoren

Ein Sektor wird durch einen Anfangs- und einen Endwinkel der Gondelposition sowie eine minimale und eine maximale Windgeschwindigkeit gebildet. Das Sektormanagement stellt 8 Sektoren zur Verfügung.

Anfangs- und Endwinkel eines Sektors

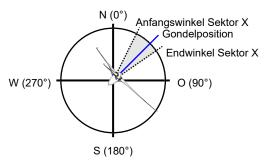


Abb. 1: Anfangs- und Endwinkel eines Sektors

Die Anfangs- und Endwinkel der Gondelposition jedes Sektors können zwischen 0° und 359° in 1°-Schritten parametriert werden. Der Bereich zwischen Anfangs- und Endwinkel wird im Uhrzeigersinn gebildet.

```
Sektorielle Abreg.: Sektorielle Abreg.:
Anfangswinkel Endwinkel
Sektor 1: Sektor 1:
P4011= 25° P4021= 60°
```

Abb. 2: Parametrierter Anfangs- und Endwinkel eines Sektors

Minimale und maximale Windgeschwindigkeit eines Sektors

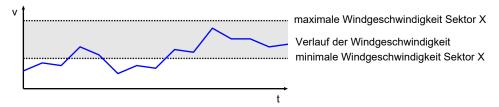


Abb. 3: Minimale und maximale Windgeschwindigkeit eines Sektors

Die minimale und maximale Windgeschwindigkeit jedes Sektors können zwischen 0 und 60 m/s in 0,1-m/s-Schritten parametriert werden. Die Differenz zwischen minimaler und maximaler Windgeschwindigkeit eines Sektors muss mindestens 1 m/s betragen.

```
Sektorielle Abreg.: Sektorielle Abreg.:
Min. Wind9eschw. für Max. Wind9eschw. für
Sektor 1:
P4031= 5.0m/s P4041= 15.0m/s
```

Abb. 4: Parametrierte minimale und maximale Windgeschwindigkeit eines Sektors

D0232855/10.0-de / DB 5 von 15

Begrenzen der Leistung

Für jeden parametrierten Sektor kann eine maximale Leistung (Wirkleistung) parametriert werden, die die Windenergieanlage nicht überschreiten soll.

```
Sektorielle Abre9.:
Max. Leistun9 im
Sektor 1:
P4051= 450kW
```

Abb. 5: Parametrierte maximale Wirkleistung eines Sektors

Begrenzen des minimalen Blattwinkels

Alternativ zur maximalen Leistung kann ein minimaler Blattwinkel parametriert werden, den die Windenergieanlage nicht unterschreiten soll.

```
Sektorielle Abre9.:
Min. Blattwinkel im
Sektor 1:
P4061= 10.00°
```

Abb. 6: Parametrierter minimaler Blattwinkel eines Sektors

Um die Windenergieanlage in einem Sektor anzuhalten (Trudelbetrieb), wird ein minimaler Blattwinkel von ≥ 45° parametriert (vorzugsweise 90°).

Jeder parametrierte minimale Blattwinkel ≥ 45° hat den Trudelbetrieb zur Folge. Es ist nicht möglich, die Rotorblätter mit dem Sektormanagement in Fahnenstellung zu verstellen, auch nicht bei einem parametrierten minimalen Blattwinkel von z. B. 90°.

Deaktivieren einzelner Sektoren

Sind der Anfangs- und der Endwinkel eines Sektors auf den gleichen Wert (vorzugsweise 0°) eingestellt, ist der Sektor deaktiviert.

6 von 15 D0232855/10.0-de / DB

3 Durchfahren von Sektorgrenzen

Die Windenergieanlage wird abgeregelt bzw. angehalten, wenn die Gondelposition innerhalb eines parametrierten Gondelpositionsbereichs liegt und der gleitende Mittelwert der Windgeschwindigkeit über einen Zeitraum von 10 Minuten innerhalb des parametrierten Windgeschwindigkeitsbereichs liegt.

Der gleitende 10-Minuten-Mittelwert der Windgeschwindigkeit wird jede Minute neu gebildet. Die Auswertung der Windgeschwindigkeit und der Gondelposition erfolgt im Sekundentakt.

Verlässt die Windenergieanlage den Sektor, wird die Abregelung erst nach Ablauf von 60 s, das Anhalten erst nach Ablauf von 10 min (parametrierbar) aufgehoben. Auf diese Weise wird verhindert, dass die Windenergieanlage z. B. bei böigen Windverhältnissen ständig zwischen normalem und abgeregeltem Betrieb wechselt.

Überschneiden sich Sektoren, werden die kleinste maximale Leistung und der größte minimale Blattwinkel übernommen, die für die jeweilige Gondelposition gelten, d. h. die Windenergieanlage kann gleichzeitig in der Leistung und im Blattwinkel abgeregelt sein.

Das Sektormanagement hält die Windenergieanlage nicht während einer Turmkabelentdrillung und auch nicht während einer Positionierung der Gondel bei Eisansatz an, da die Windenergieanlage dann bereits angehalten ist und die Windrichtung nicht mehr mit der Gondelposition übereinstimmt.

Um Leistungssprünge beim Durchfahren der Sektorgrenzen zu verhindern, sind Leistungsgradienten definiert. Sie gelten für alle Sektoren.

D0232855/10.0-de / DB 7 von 15

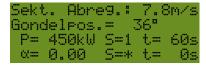
4 Anzeige des aktuellen Zustands

4.1 Zustand der sektoriellen Abregelung

Am I/O-Board 2 im Gondelsteuerschrank unter Allgemeine Daten wird der Zustand angezeigt.

Abb. 7: Zustand der sektoriellen Abregelung

1	Aktuelle Windgeschwindigkeit	2	Aktuelle Gondelposition
3	Aktuelle Leistungsbegrenzung	4	Aktuelle Blattwinkelbegrenzung
5	Sektor, der die Leistungsbegrenzung verursacht	6	Sektor, der die Blattwinkelbegren- zung verursacht
7	Restzeit, nach der die Blattwinkelbe- grenzung aufgehoben wird	8	Restzeit, nach der die Leistungsbegrenzung aufgehoben wird


Beispiel 1: Keine Abregelung der Windenergieanlage

Sekt. Gondel				8m/s
P= 96				Øs.
o= 0.	00	S=*	-t.=	Øs.

Abb. 8: Keine Abregelung der Windenergieanlage

Die Windenergieanlage befindet sich nicht in einem parametrierten Sektor (s=*), daher wird sie nicht abgeregelt.

Beispiel 2: Abregelung der Windenergieanlage durch Sektor 1

Abb. 9: Abregelung der Windenergieanlage durch Sektor 1

Die Windenergieanlage befindet sich im Sektor 1. Die Leistung wird auf 450 kW begrenzt. Die Restzeit *t* beträgt 60 s. An der unveränderten Restzeit lässt sich erkennen, dass sich die Windenergieanlage im Sektor befindet.

8 von 15 D0232855/10.0-de / DB

Beispiel 3: Abregelung der Windenergieanlage durch den Leistungsgradient-Regler

Abb. 10: Abregelung der Windenergieanlagedurch den Leistungsgradient-Regler

Die Windenergieanlage hat den Sektor 1 verlassen. Die Restzeit *t* ist abgelaufen. Der Leistungsgradient-Regler (dP/dt-Regler) erhöht die Leistung. Dabei wird der Maximalwert (*Pm*), auf den die Leistung erhöht wird, im Abstand von einigen Sekunden eingeblendet.

Beispiel 4: Abregelung der Windenergieanlage durch 2 Sektoren

```
Sekt. Abre9.:10.4m/s
Gondelpos.= 32°
P= 450kW S=1 t= 60s
¤= 5.00 S=2 t= 33s
```

Abb. 11: Abregelung der Windenergieanlage durch 2 Sektoren

Die Windenergieanlage befindet sich im Sektor 1. Sektor 2 wurde verlassen, was an der ablaufenden Restzeit (t= 33s) zu erkennen ist. Die Leistung wird auf 450 kW begrenzt (durch Sektor 1). Der Blattwinkel wird auf 5° begrenzt (durch Sektor 2). Die Blattwinkelbegrenzung wird nach 33 s aufgehoben, vorausgesetzt, die Bedingungen für Sektor 2 werden innerhalb dieser Zeit nicht erneut erfüllt.

4.2 Betriebsstundenzähler für den leistungsbegrenzten Betrieb

Am I/O-Board 1 im Steuerschrank unter Einspeisedaten wird der Betriebsstundenzähler für den leistungsbegrenzten Betrieb angezeigt.

Während jeder Leistungsbegrenzung blinkt der Text Leistungsbegrenz.: 18 in der obersten Zeile. Zusätzlich läuft die Anzeige des Betriebsstundenzählers *T* hoch. Der Betriebsstundenzähler addiert alle Stunden, in der die Windenergieanlage leistungsbegrenzt läuft.

```
Leistun9sbe9renz.:18
Sektoriell
P-Max= 450kW
T= 23:12:34h ↓
```

Abb. 12: Anzeige der Betriebsstunden mit leistungsbegrenzten Betrieb

Ist eine Summe von 10 Stunden erreicht, wird die Statusmeldung 230:118 Leistungsbegrenzung (10h): Sektoriell generiert. Die entsprechende Gondelposition, Windgeschwindigkeit und Leistung können anhand der 10-Minuten-Daten ermittelt werden.

D0232855/10.0-de / DB 9 von 15

4.3 Zustand des sektoriellen Anhaltens

Am I/O-Board 2 im Gondelsteuerschrank wird unter Allgemeine Daten der Zustand angezeigt.

Abb. 13: Zustand des sektoriellen Anhaltens

1	Aktuelle Gondelposition	2	Restzeit, nach der das Anhalten aufgehoben wird
3	Zeit, nach der der Zusatzstatus (hier: 23 Gondelposition (Sektor 3)) aktualisiert wird. Um schnelle Statuswechsel zu verhindern, wird der Zusatzstatus nur alle 120 s aktualisiert.	4	Status des Sektormanagements (hier: 1:23 Anlage gestoppt - Gondelposition (Sektor 3))
5	Sektor, der das Anhalten verursacht	6	Aktuelle Windgeschwindigkeit

Wenn die Windenergieanlage angehalten wird (Trudelbetrieb), wird immer eine Statusmeldung für den jeweiligen Sektor generiert.

10 von 15 D0232855/10.0-de / DB

5 Dokumentation

Zur Dokumentation des Sektormanagements einer Windenergieanlage kann zusätzlich eine Aufzeichnung aktiviert werden, die zustandsabhängig Statusdaten als auch Informationen der Windenergieanlage erfasst. Hier wird unter anderem ereignisabhängig festgehalten, wann und unter welchen Windbedingungen ein Sektormanagement aktiv oder inaktiv war.

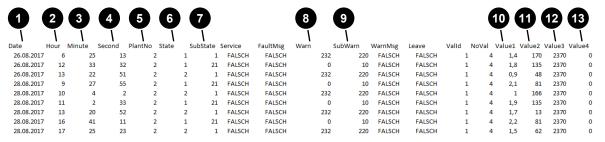
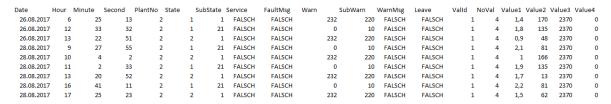



Abb. 14: Dokumentation des Sektormanagements

1	Datum	2	Stunde
3	Minute	4	Sekunde
5	Windenergieanlagen-Nummer	6	Hauptstatus
7	Nebenstatus	8	Hauptinformation
9	Nebeninformation	10	Windgeschwindigkeit
11	Gondelposition	12	max. Wirkleistung
13	min. Blattwinkel		

Zur Aktivierung der Aufzeichnung muss der Parameter 4093 (Sektor-Information generieren) an der Windenergieanlage aktiviert werden. Die Statusdaten werden in einer Monatsdatei gespeichert.

Beispiel 1: Anhalten der Windenergieanlage (Trudelbetrieb)

Abb. 15: Anhalten der Windenergieanlage (Trudelbetrieb)

Der Status 1:21 Anlage gestoppt : Gondelposition (Sektor 1) zeigt an, dass das Anhalten der Windenergieanlage im Sektor 1 aktiviert wurde. Die Information 232:220 Allgemeine Information : Keine sektorielle Abschaltung zeigt an, dass der Trudelbetrieb der Windenergieanlage deaktiviert wurde.

D0232855/10.0-de / DB 11 von 15

Beispiel 2: Abregelung der Windenergieanlage durch Begrenzung des minimalen Blattwinkels

Date	Hour	Minute	Second	PlantNo	State	SubState	Service	FaultMsg	Warn	Sub	Warn	WarnMsg	Leave	Valld	NoVal	Value1	Value2	Value3	Value4	
26.08.2017	15	26	5 50) 11	. (0	FALSCH	FALSCH		232	211	FALSCH	FALSCH	1	. 4	3,7	158	2370	3	
26.08.2017	15	30	40) 11	. (0	FALSCH	FALSCH		232	210	FALSCH	FALSCH	1	. 4	3,9	155	2370	0	
29.08.2017	2	23	11	l 11	. () 1	FALSCH	FALSCH		232	211	FALSCH	FALSCH	1	. 4	6,4	158	2370	3	
29.08.2017	3	9) 11	. (0	FALSCH	FALSCH		232	213	FALSCH	FALSCH	1	. 4	7,4	158	2370	4	
29.08.2017	3	46	3	3 11	. (0	FALSCH	FALSCH		232	211	FALSCH	FALSCH	1	. 4	7,2	158	2370	3	
29.08.2017	3	52) 11	. (0	FALSCH	FALSCH		232	213	FALSCH	FALSCH	1	. 4	7,4	158	2370	4	
29.08.2017	7	38	2	2 11	. (0	FALSCH	FALSCH		232	211	FALSCH	FALSCH	1	. 4	7,2	178	2370	3	
29.08.2017	7	45) 11	. (0	FALSCH	FALSCH		232	213	FALSCH	FALSCH	1	. 4	7,4	181	2370	4	
29.08.2017	. 8	16	. 2	2 11	. (0	FALSCH	FALSCH		232	211	FALSCH	FALSCH	1	. 4	7.2	181	2370	3	

Abb. 16: Abregelung der Windenergieanlage durch Begrenzung des minimalen Blattwinkels

Die Informationen 232:211 Allgemeine Information: Alpha-Min-Begrenzung Sektor 1 aktiv und 232:213 Allgemeine Information: Alpha-Min-Begrenzung Sektor 3 aktiv zeigen an, dass die Blattwinkelbegrenzung in den Sektoren 1 und 3 aktiviert wurde. Die Information 232:210 Allgemeine Information: Keine sektorielle Alpha-Min-Begrenzung zeigt an, dass die Blattwinkelbegrenzung aufgehoben wurde.

Beispiel 3: Abregelung der Windenergieanlage durch Leistungsbegrenzung

Date	Hour	Minute	Second	PlantNo	State	SubState	Service	FaultMsg	Warn	9	SubWarn	WarnMsg	Leave	Valld	NoVal	Value1	Value2	Value3	Value4
26.08.2017	15	21	. 58	3	1	0) FALSCH	FALSCH		232	200	FALSCH	FALSCH		1 4	8,4	211	2370	0
26.08.2017	15	50	22	! :	1	0) FALSCH	FALSCH		232	201	FALSCH	FALSCH		1 4	9,1	171	1800	0
26.08.2017	16		49) :	1	0) FALSCH	FALSCH		232	200	FALSCH	FALSCH		1 4	8,9	208	2370	0
26.08.2017	16	9			1	0) FALSCH	FALSCH		232	201	FALSCH	FALSCH		1 4	8,8	171	1800	0
26.08.2017	7 16	20	22	!	1	0) FALSCH	FALSCH		232	200	FALSCH	FALSCH		1 4	8,9	209	2370	0
26.08.2017	16	52		1	1	0) FALSCH	FALSCH		232	201	FALSCH	FALSCH		1 4	9,3	171	1800	0
26.08.2017	17	, ,	. 52	!	1	0) FALSCH	FALSCH		232	200	FALSCH	FALSCH		1 4	9,1	220	2370	0
28.08.2017	7 9	46	48	3	1	0) FALSCH	FALSCH		232	201	FALSCH	FALSCH		1 4	8,7	110	1800	0
28.08.2017	7 10	47	43		1	0	D FALSCH	FALSCH		232	200	FALSCH	FALSCH		1 4	8,9	29	2370	0

Abb. 17: Abregelung der Windenergieanlage durch Leistungsbegrenzung

Die Information 232:201 Allgemeine Information: P-Max-Begrenzung Sektor 1 aktiv zeigt an, dass die Leistungsbegrenzung im Sektor 1 aktiviert wurde. Die Information 232:200 Allgemeine Information: Keine sektorielle P-Max-Begrenzung zeigt an, dass die die Leistungsbegrenzung aufgehoben wurde.

12 von 15 D0232855/10.0-de / DB

6 Schallleistungspegel

Wird der Steuerung durch das Sektormanagement ein minimaler Blattwinkel vorgegeben, reduziert sich die Leistung der Windenergieanlage entsprechend, was mit einer Reduzierung des Schallleistungspegels einhergeht. Die Nennleistung und der maximale Schalleistungspegel bleiben im Vergleich zum Normalbetrieb bzw. schallreduzierten Betrieb (falls eingestellt) unverändert, werden jedoch erst bei höheren Windgeschwindigkeiten erreicht.

Die Vermessung des Schallleistungspegels zur Bestimmung der Garantiewerte für Schallleistungspegel wird grundsätzlich bei Normalbetrieb der Windenergieanlage, d. h. ohne Sektormanagement durchgeführt. Bei der immissionsseitigen Windparkplanung werden diese Garantiewerte verwendet. Diese konservative Herangehensweise unterstützt den Immissionsschutz, da die realen Schallleistungspegel der Windenergieanlage geringer sind.

D0232855/10.0-de / DB 13 von 15

7 Eisansatzerkennung

Um Eisansatz an den Rotorblättern zu erkennen, erstellt die Anlagensteuerung eine anlagenindividuelle Leistungskennlinie und detektiert anhand von Abweichungen von dieser Kennlinie Eisansatz. Diese Funktion ist in jeder Windenergieanlage enthalten und aktiv. Wird die Windenergieanlage durch das Sektormanagement abgeregelt, erzeugt die Windenergieanlage bei gleicher Windgeschwindigkeit weniger Leistung, woraus die Anlagensteuerung auf Eisansatz schließen würde. Um dies zu verhindern, ist sie so programmiert, dass sie für jeden Betriebsmodus eine seperate Leistungskennlinie erstellt. Somit funktioniert die Eisansatzerkennung auch bei Windenergieanlagen mit aktivem Sektormanagement uneingeschränkt.

14 von 15 D0232855/10.0-de / DB

Fachwortverzeichnis

Blattwinkel Winkel zwischen der Rotorebene und der längsten Sehne in ei-

nem bestimmten, nahe der Rotorblattspitze liegenden Blattquerschnitt. Im Teillastbetrieb steht das Rotorblatt ungefähr auf 0° (der

Winkel weicht je nach Blatttyp etwas ab).

Gondelsteuerschrank Steuerschrank in der Gondel mit Bedienfeld, in erster Linie für

Test- und Wartungszwecke.

I/O-Board Platine im Gondelsteuerschrank oder Steuerschrank, die einen

wesentlichen Teil der Anlagensteuerung übernimmt.

Leistungsgradient Geschwindigkeit, mit der die Leistung gesteigert bzw. verringert

werden kann oder soll.

Status Meldung, die den aktuellen Betriebszustand eines Geräts oder ei-

ner Erzeugungseinheit beschreibt. Ein Status besteht aus einem

Hauptstatus und einem Nebenstatus.

Steuerschrank Schaltschrank, der die zentralen Komponenten für die Steuerung

einer Windenergieanlage enthält und über ein Bedienfeld mit Schaltern, Anzeigeinstrumenten etc. verfügt. Neben dem zentralen Steuerschrank gibt es untergeordnete Steuerschränke für einzelne Baugruppen, die durch einen Zusatz bezeichnet werden, z.

B. Steuerschrank Blattenteisung.

Trudelbetrieb Betriebsart einer ENERCON Windenergieanlage, bei der sich die

Rotorblätter in einem Rotorblattwinkel von in der Regel 60° (in der sogenannten Trudelstellung) befinden, wodurch sich die Windenergieanlage im Leerlauf befindet. Der Rotor dreht nur sehr langsam. Im Trudelbetrieb wird keine Energie erzeugt und die Rotordrehzahl wird überwacht. Bei hohen Windgeschwindigkeiten wird der Rotorblattwinkel erhöht, damit die maximale Trudeldrehzahl

nicht überschritten wird.

D0232855/10.0-de / DB 15 von 15

ENERGIE FÜR DIE WELT

Übersicht Betriebsmodi

In der nachfolgenden Tabelle ist ersichtlich, für welche Turmvarianten die Betriebsmodi verfügbar sind. Des Weiteren werden der maximale Schallleistungspegel, die Solldrehzahl sowie die Nennleistung der einzelnen Betriebsmodi aufgeführt.

Tab. 1: Übersicht Betriebsmodi

Betriebsmodus	Schallleis- tungspegel in dB(A)	Nennleis- tung in kW	Solldreh- zahl in U/ min	E-138 EP3 E3-ST-81-FB- C-01	E-138 EP3 E3-ST-99-FB- C-01	E-138 EP3 E3-ST-111- FB-C-01	E-138 EP3 E3-HST-111- FB-C-01	E-138 EP3 E3-HST-131- FB-C-01	E-138 EP3 E3-HT-160- ES-C-01
OM-0-0 OM-0-1	106,0	4260	11,10	X	Х	Х	Х	Х	Х
OM-YO-11-0 OM-YO-11-1	106,5	4500	11,10	X	Х	Х	Х	Х	-
OM-LO-02-0	-	3700	9,00	Х	-	-	-	-	-
OM-NR-01-0 OM-NR-01-1	105,0	4080	10,60	X	Х	Х	Х	Х	Х
OM-NR-02-0 OM-NR-02-1	104,0	3870	10,10	X	Х	Х	Х	Х	Х
OM-NR-03-0 OM-NR-03-1	103,2	3700	9,70	Х	Х	-	Х	Х	Х
OM-NR-101,0 dB-0 OM-NR-101,0 dB-1	101,0	3000	8,60	Х	Х	Х	Х	-	Х
OM-NR-99,0 dB-0 OM-NR-99,0 dB-1	99,0	2240	7,70	Х	Х	Х	Х	Х	Х

x = verfügbar

^{- =} nicht verfügbar

Übersicht Betriebsmodi

In der nachfolgenden Tabelle ist ersichtlich, für welche Turmvarianten die Betriebsmodi verfügbar sind. Des Weiteren werden der maximale Schallleistungspegel, die Solldrehzahl sowie die Nennleistung der einzelnen Betriebsmodi aufgeführt.

Tab. 1: Übersicht Betriebsmodi

Betriebs- modus	Schall- leistungs- pegel in dB(A)	Nennleis- tung in kW	Soll- dreh- zahl in U/min	E-160 EP5 E3- ST-99- FB-C-01	E-160 EP5 E3- ST-99- FB-C-02	E-160 EP5 E3- HST-12 0-FB- C-01	E-160 EP5 E3- HST-14 0-FB- C-01	E-160 EP5 E3- HT-160- ES-C-01	E-160 EP5 E3- HT-166- ES-C-01
0 s-1	106,8	5560	9,60	x	X	x	x	x	X
NR I s-1	106,0	5440	9,40	x	X	x	x	x	X
NR II s-1	105,2	5270	9,10	x	X	x	x	x	x
NR III s-1	104,5	5100	8,80	x	х	x	x	x	X
NR IV s-1	103,7	4920	8,50	X	X	x	x	x	X
NR V s-1	103,4	4750	8,20	X	х	x	x	x	X
NR VI s-1	103,0	4580	7,90	х	х	х	х	х	X
NR VII s-1	102,1	4400	7,60	х	х	x	х	х	X
NR VIII s-1	98,5	2250	5,70	х	х	х	х	х	X

x = verfügbar

Stellungnahme

Verhalten der ENERCON Windenergieanlagen bei Leistungsreduzierungen aufgrund von Einspeisemanagement (EisMan)

Datum: 05.01.2021

Impressum Herausgeber

ENERCON GmbH • Dreekamp 5 • 26605 Aurich • Deutschland

Telefon: +49 4941 927-0 • Telefax: +49 4941 927-109 E-Mail: info@enercon.de • Internet: http://www.enercon.de

Geschäftsführung: Hans-Dieter Kettwig, Jost Backhaus, Dr. Thomas Cobet,

Momme Janssen, Dr. Martin Prillmann, Jörg Scholle

Zuständiges Amtsgericht: Aurich • Handelsregisternummer: HRB 411

Ust.ld.-Nr.: DE 181 977 360

Urheberrechtshinweis

Die Inhalte dieses Dokumentes sind urheberrechtlich durch das deutsche Urheberrechtsgesetz sowie durch internationale Verträge geschützt. Sämtliche Urheberrechte an den Inhalten dieses Dokumentes liegen bei der

ENERCON GmbH, sofern und soweit nicht ausdrücklich ein anderer Urheber

angegeben oder offensichtlich erkennbar ist.

Dem Nutzer werden durch die Bereitstellung der Inhalte keine gewerblichen Schutzrechte, Nutzungsrechte oder sonstigen Rechte eingeräumt oder vorbehalten. Dem Nutzer ist es untersagt, für das Know-how oder Teile davon

Rechte gleich welcher Art anzumelden.

Die Weitergabe, Überlassung und sonstige Verbreitung der Inhalte dieses Dokumentes an Dritte, die Anfertigung von Kopien, Abschriften und sonstigen Reproduktionen sowie die Verwertung und sonstige Nutzung sind – auch auszugsweise – ohne vorherige, ausdrückliche und schriftliche Zustimmung des Urhebers untersagt, sofern und soweit nicht zwingende gesetzliche Vorschriften

ein Solches gestatten.

Verstöße gegen das Urheberrecht sind rechtswidrig, gem. §§ 106 ff.

Urheberrechtsgesetz strafbar und gewähren den Trägern der Urheberrechte

Ansprüche auf Unterlassung und Schadensersatz.

Geschützte Marken

Alle in diesem Dokument ggf. genannten Marken- und Warenzeichen sind geistiges Eigentum der jeweiligen eingetragenen Inhaber; die Bestimmungen des

anwendbaren Kennzeichen- und Markenrechts gelten uneingeschränkt.

Änderungsvorbehalt

Die ENERCON GmbH behält sich vor, dieses Dokument und den darin beschriebenen Gegenstand jederzeit ohne Vorankündigung zu ändern, insbesondere zu verbessern und zu erweitern, sofern und soweit vertragliche Vereinbarungen oder gesetzliche Vorgaben dem nicht entgegenstehen

1 Einspeisemanagement (EisMan)

Beim Einspeisemanagement, abgekürzt auch EisMan genannt, wird vom Netzbetreiber eine Abregelung der Einspeisung von Strom aus Erneuerbaren Energien in das Stromnetz vorgenommen. Diese Zwangsabregelung dient als Schutz der Netzüberlastung. Z.B. dürfen die Windenergieanlagen (WEA) in dieser Zeit keinen Strom in das Netz einspeisen und müssen ggf. ausgeschaltet werden. Die dabei entstandene Ausfallsarbeit unterliegt der Entschädigungspflicht, welche im Erneuerbaren-Energie-Gesetz (EEG, [1] und [2]) geregelt ist.

In Norddeutschland ist die Dichte an WEA groß, sodass Abregelungen bezüglich EisMan oft eintreten. Nicht selten wird dabei die Leistung der WEA für mehrere Stunden oder gar Tage durch Vorgaben der Netzbetreiber auf 0 kW reduziert.

2 Steuerungstechnisches Verhalten der Enercon-WEA während EisMan

EisMan erfolgt in der Regel bei hohen Windgeschwindigkeiten. Dabei sind die klimatischen Bedingungen, z.B. während eines Sturmes, und die hohe Niederschlagswahrscheinlichkeit sehr ungünstig. Der Generator und die Gleichrichtereinheiten können feucht bzw. nass werden. Eine Leistungserhöhung binnen kürzester Zeit würde unter diesen Umständen zu Schäden am Generator und Gleichrichtern führen. Um diese möglichen Schäden und unnötige Ausschaltzeiten zum Trocknen des Generators zu verhindern, wird der Generator bereits während EisMan geheizt. Um die für die Generatorheizung aufgewendete Energie zu kompensieren, wird in einem Windpark die Hälfte der WEA in den sogenannten Self Supply Mode (Selbstversorgungsmodus, [3]) mit typisch 1,5 % der Nennleistung versetzt. Nach einer bestimmten Zeitperiode, i.d.R. 2 Stunden, wechseln die WEA von dem Generatorheizbetrieb in den Self Supply Mode. Dieser Wechsel läuft zyklisch ab bis das EisMan-Ereignis beendet ist. Diese Kombination aus Generatorheizbetrieb und Selbstversorgungsmodus wird auch als Feuchteregelung bezeichnet.

Achtung: Es wird dringend davon abgeraten, die Feuchteregelung dauerhaft zu deaktivieren. Dies kann, bei entsprechenden Witterungsverhältnissen zu schwerwiegenden Schäden an der WEA führen!

3 Schalltechnisches Verhalten der Enercon-WEA während EisMan

Während der Feuchteregelung ist die Drehzahl der WEA deutlich geringer als die Nenndrehzahl. Somit ist die Geräuschentwicklung (aeroakustische Geräusche) geringer als im Normalbetrieb der WEA. Der Generator produziert höchstens 1,5 % der Nennleistung. Somit ist die mechanische Geräuschentwicklung zu vernachlässigen.

Die Verifizierung erfolgte bereits an einer WEA des Typs ENERCON E-92 am Standort Priesholz in Schleswig-Holstein durch einen unabhängigen, akkreditierten Gutachter (GWJ Ingenieurgesellschaft für Bauphysik). Hierbei wurde sowohl der Generatorheizbetrieb als auch der Self Supply Mode schalltechnisch vermessen [4]. Dabei wurden keine besonderen akustischen Auffälligkeiten im Fernbereich der WEA festgestellt.

4 Schalltechnisches Verhalten der E-138 EP3 E2 während EisMan

Bei der E-138 EP3 E2 wird der Selbstversorgungsmodus mit einer Drehzahl von 5-6~U / min sichergestellt, was dem Trudelbetrieb der WEA nahekommt. Entsprechend wird der emittierte Schalleistungspegel der WEA kaum vom Hintergrundgeräusch zu Unterscheiden sein.

Für den Generatorheizbetrieb wird die WEA mit einer Drehzahl von kleiner als 8 U / min betrieben. Da der emittierte Schallleistungspegel primär vom aerodynamischen Geräusch und somit der Drehzahl abhängt, wird ein vergleichbarer Pegel wie beim BM 500 kWs oder BM 97,5 dB erwartet (beide Betriebsmodi haben eine Drehzahl von 7,7 U/min). Außerdem werden bei EisMan, ganze WPs vom Netz genommen, also findet ein Mischbetrieb aus Generatorheizbetrieb und Selbstversorgungsmodus statt. Dieses führt zu einer deutlich niedrigeren Schallemission auf Windparkebene, was somit zu einem deutlich geringeren imissionseitigen Schalldruckpegel an den maßgeblichen Immissionsort führt.

5 Schlussfolgerung

Besonders in größeren Windparks mit geringerer Netzverträglichkeit sind die elektrischen Komponenten der WEA (wie Generator oder Gleichrichter) während EisMan von eindringender Feuchtigkeit zu schützen. Mögliche Schäden auf Grund kompletter Stilllegung der WEA wären aus wirtschaftlicher Sicht vehement. Die Feuchteregelung der ENERCON WEA verhindert nicht nur die Entstehung dieser Schäden und ermöglicht die sofortige Einspeisung nach einem EisMan Event, sie ist zudem aus akustischer Sicht immissionsseitig nicht auffällig.

Quellen:

- [1] Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG 2017), § 14 Einspeisegesetz, https://www.gesetze-im-internet.de/eeg 2014/ 14.html
- [2] Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz – EEG 2017), § 15 Härtefallregelung, https://www.gesetze-im-internet.de/eeg 2014/ 15.html
- [3] Technische Beschreibung, Self Supply Mode, **Dokument-ID: D0211757-2**; ENERCON GmbH, 2016-03-30
- [4] Schalltechnischer Messbericht, Windpark Priesholz E-921254, OM_self-supply und OM_genheat, **Berichtsnummer: 191216**, GWJ Ingenieurgesellschaft für Bauphysik GbR, 2019-12-16

Prüfbericht WICO 017SC123-02 11.06.2025

Ermittlung der Schallimmission durch Prognose

nach TA Lärm 1998

Quellenart: Windenergieanlage (WEA)

Prüfobjekt: Drei WEA verschiedenen Typs als Zusatzbelastung

LAI-Hinweise: Hinweise des LAI zum Schallimmissionsschutz bei

Windenergieanlagen mit Stand 30. Juni 2016

Standort: Böxlund, Schleswig-Holstein

Projekt

Titel:

Ermittlung der Schallimmission durch Prognose

Standort:

Böxlund, Schleswig-Holstein

Aufgabenstellung:

Berechnung und Beurteilung der Schallimmission nach TA Lärm /1/, DIN ISO 9613-2 /2/ und den LAI-Hinweisen aus dem Jahr 2016 /9/ in Verbindung mit den Festlegungen der Prüfanweisung QMP-11 /14/ der WIND-consult GmbH. Die Berechnung erfolgt unter Berücksichtigung der Regelungen des MELUND-Erlasses 2018 /18/

Prüfobjekt:

Drei WEA verschiedenen Typs als Zusatzbelastung

Referenzdokumente (Bezugsquellen):

keine

Standard:

Technische Anleitung zum Schutz gegen Lärm – TA Lärm 1998 /1/

Auftrag

Auftraggeber:

BWP BB Wind GmbH & Co.KG, Dammacker 32, 24980 Schafflund

Auftragnehmer:

WIND-consult GmbH, Reuterstraße 9, 18211 Bargeshagen

Auftragsnummer:

WICO 017SC123

Auftragserteilung:

09.01.2023

Auftragsbestätigung:

18.01.2023

Messtelle nach §29b BlmSchG für die Ermittlung von Geräuschen

Bearbeitung: Prüfung: Freigabe:

René Kiepura M.Sc.

C. Hoffmann M.Eng.

Dipl.-Ing. J. Schwabe

Prüfingenieur

fachl. Verantw.der Messstelle

Geschäftsleitung

(Dieser Prüfbericht wurde elektronisch unterschrieben.)

Dieser Prüfbericht darf nur mit schriftlicher Zustimmung der WIND-consult GmbH auszugsweise vervielfältigt und genutzt werden. Die Ergebnisse beziehen sich ausschließlich auf das Mess-/Prüfobjekt.

Inhalt

1	EINFÜHRUNG	5
1.1	Aufgabenstellung	5
1.2	METHODE DER BERECHNUNG UND BEURTEILUNG	5
1.3	TIEFFREQUENTE GERÄUSCHE UND INFRASCHALL	9
2	METHODE DER PROGNOSEUNSICHERHEIT	10
2.1	ERMITTLUNG DER PROGNOSEUNSICHERHEIT NACH DEN LAI-HINWEISEN 2016 /9/	10
2.2	GESONDERTE VORGABEN FÜR DAS BUNDESLAND SCHLESWIG-HOLSTEIN	11
3	STANDORT- UND PROJEKTBESCHREIBUNG	12
4	EINGANGSDATEN FÜR DIE BERECHNUNG	15
4.1	KOORDINATENSYSTEM UND KOORDINATEN	15
4.2	Parameter der Emissionsquelle – Vorbelastung	15
4.3	Parameter der Emissionsquelle – Zusatzbelastung	17
4.4	Immissionsorte	18
5	ERGEBNISSE	19
5.1	Vorbelastung	19
5.2	Zusatzbelastung	20
5.3	GESAMTBELASTUNG	21
6	ABWEICHUNG ZU DEN RICHTLINIEN	22
7	ZUSAMMENFASSUNG	23
8	LITERATUR	24
۵	VERZEICHNIS DER VERWENDETEN FORMELZEICHEN LIND ARKÜRZLINGEN	25

10 AN	IHÄNGE	27
10.1	Parameter der Emissionsquellen	27
10.2	PARAMETER DER IMMISSIONSORTE	34
10.3	ENERCON E-160 EP5 E3 R1 / 5560 kW Modus 0 s-1	35
10.4	ENERCON E-160 EP5 E3 R1 / 5560 KW MODE NR II S-1	43
10.5	ENERCON E-160 EP5 E3 R1 / 5560 KW MODE NR VII S-1	51
10.6	ENERCON E-138 EP3 E3 / 4260 KW MIT TES MODE 0 S	59
10.7	ENERCON E-138 EP3 E3 / 4260 KW MIT TES MODE 101,0 DB	67
10.8	Lageplan – Rechenmodell	75
10.9	DIGITALES HÖHENMODELL	76
10.10	Rasterlärmkarte Vorbelastung - Beurteilungszeitraum Nacht	77
10.11	Rasterlärmkarte Zusatzbelastung - Beurteilungszeitraum Nacht	78
10.12	Rasterlärmkarte Gesamtbelastung - Beurteilungszeitraum Nacht	79
10.13	VERWENDETES RECHENMODELL IN IMMI	80
10.14	EINZELPUNKTBERECHNUNG – GESAMTBELASTUNG NACHT (SUMMENPEGEL)	82
10.15	Legende zu Anlage 10.14	93
10.16	FOTODOKUMENTATION	94

1 Einführung

1.1 Aufgabenstellung

Die WIND-consult GmbH wurde beauftragt, für die, durch die BWP BB Wind GmbH & Co.KG, geplanten Windenergieanlagen (WEA) am Standort Böxlund, eine Ermittlung der Geräuschimmissionen durch Prognose nach /1/ in Verbindung mit den LAI-Hinweisen 2016 /9/ und unter Berücksichtigung der Regelung des Landes Schleswig-Holstein (MELUND-Erlass 2018 /11/) durchzuführen.

Die im Prüfbericht WICO 017SC123-01 vom 06.11.2024 betrachtete Windparkkonfiguration soll hinsichtlich der Koordinaten und der Nabenhöhe der WEA (Windenergieanlagen) unverändert bleiben. Grund für die Neufassung des genannten Prüfberichts ist ausschließlich die präzisere Bezeichnung des WEA-Typs durch den Hersteller sowie die daraus resultierende Anpassung der anzusetzenden Emissionsparameter.

Vom Auftrag abweichende bzw. weiterführende Maßnahmen und Leistungen wurden nicht durchgeführt.

1.2 Methode der Berechnung und Beurteilung

Grundlage für die Ermittlung und Beurteilung der Geräuschemissionen und den daraus resultierenden Geräuschimmissionen am maßgeblichen Immissionsort (IO) ist die TA Lärm /1/.

Dabei sind nach /1/ Beurteilungspegel L_r zu bestimmen und mit dem Immissionsrichtwert (IRW) eines maßgeblichen IOs zu vergleichen.

Der zu ermittelnde Beurteilungspegel L_r ergibt sich aus dem Mittelwert der in den Beurteilungszeiten einwirkenden Geräusche, welche von den genehmigungsbedürftigen Anlagen ausgehen. Dabei ist der Wert L_r abhängig von der Höhe und Dauer der Lärmimmissionen, sowie von Impuls-, Ton- und Informationshaltigkeiten.

Gemäß Ziffer A.1.4 aus /1/ ergibt sich der Beurteilungspegel L_r nach Gleichung 1.1.

$$L_r = 10 \log \left[\frac{1}{T_r} \sum_{i=1}^{N} T_i \cdot 10^{0,1 \cdot (L_{Aeq,i} - C_{met} + K_{T,i} + K_{I,i} + K_{R,i})} \right]$$
 1.1

Dabei ist:

T_r die Beurteilungszeit,

T_i die Teilzeit i,

N die Anzahl der ausgewählten Teilzeiten,

LAeq,i der A-bewertete äquivalente Dauerschalldruckpegel als Mittelungspegel während der Teilzeit i,

C_{met} die meteorologische Korrektur gemäß /2/,

K_{T.i} der Zuschlag für Ton- und Informationshaltigkeit in der Teilzeit i,

K_{I,i} der Zuschlag für Impulshaltigkeit in der Teilzeit i und

K_{R,i} der Zuschlag für Tageszeiten mit erhöhter Empfindlichkeit in der Teilzeit i.

Ein wesentlicher Bestandteil des Beurteilungspegels L_r ist die Beurteilungszeit, welche nach Ziffer 6.4 aus /1/ in tags (06:00 Uhr bis 22:00 Uhr) und nachts (22:00 Uhr bis 06:00 Uhr) unterschieden wird. Hieraus abgeleitet, ergeben sich für den Beurteilungszeitraum Tag 16 h als Beurteilungszeit. Für den Nachtzeitraum ist gemäß Ziffer 6.4 aus /1/ die volle Nachtstunde mit dem höchsten zu erwartenden Beurteilungspegel maßgeblich. Daraus ergibt sich eine Beurteilungszeit von 1 h für den Beurteilungszeitraum Nacht.

In reinen und allgemeinen Wohngebieten, in Kleinsiedlungs- und Kurgebieten, sowie Krankenhäuser und Pflegeanstalten ist gemäß Ziffer 6.5 aus /1/ ist für Tageszeiten mit erhöhter Empfindlichkeit ein Zuschlag von 6 dB zu berücksichtigen.

Dabei gelten nach Ziffer 6.5 aus /1/ im 16-stündigen Beurteilungszeitraum Tag die Zeitabschnitte 06:00 Uhr bis 07:00 Uhr und 20:00 Uhr bis 22:00 Uhr werktags, sowie 06:00 Uhr bis 09:00 Uhr, 13:00 Uhr bis 15:00 Uhr und 20:00 Uhr bis 22:00 Uhr an Sonn- und Feiertagen als Zeitabschnitte mit erhöhter Empfindlichkeit.

Zur Berücksichtigung der erhöhten Störeinwirkung von impulshaltigen Geräuschen (Geräusche von kurzer Dauer, deren Pegel nach dem subjektiven Höreindruck schnell und kurzzeitig ansteigen) ist ein Impulszuschlag K_I, je nach Störeinwirkung von 3 dB oder 6 dB anzusetzen, sofern keine näheren Informationen über die Impulshaltigkeit vorliegen. Gegebenenfalls kann über das Taktmaximalpegelverfahren gemäß DIN 45645-1 /7/ auf die Impulshaltigkeit geschlossen werden.

Beim Auftreten von deutlich hervortretenden Einzeltönen ist ein Zuschlag für Ton- und Informationshaltigkeit K_T von 3 dB (auffälliger Ton) oder 6 dB (besonders auffälliger Ton) zu vergeben. Analog zur Impulshaltigkeit, kann der Zuschlag für Tonhaltigkeit messtechnisch ermittelt werden. Hierzu ist an dieser Stelle auf die DIN 45681 /8/ verwiesen.

Prinzipiell ist nach /1/ bei der Ermittlung der Geräuschimmissionen bzw. der Ermittlung des Beurteilungspegels zwischen Messung (Ziffer A.3 aus /1/) und Prognose (Ziffer A.2 aus /1/) zu unterschieden. Dabei wird das Prognoseverfahren in detaillierte Prognose und überschlägige Prognose unterteilt. Im weiteren Verlauf wird ausschließlich die detaillierte Prognose nach Ziffer A.2.3 aus /1/ betrachtet.

Hierbei wird von den mittleren Schallleistungspegeln der zu berücksichtigenden Anlagen bzw. Teilanlagen, ggf. getrennt nach Teilzeiten, ausgegangen. Daher sind für die durchzuführende Berechnung folgende Informationen notwendig:

- Mittlerer Schallleistungspegel der zu berücksichtigenden Anlage bzw. Teilanlage;
- Einwirkzeit des Geräusches, ggf. getrennt nach Teilzeiten;
- Richtwirkungskorrektur;
- Angaben zur Ton-, Informations- und Impulshaltigkeit;
- Höhe und Lage der Schallquellen;
- Lage und Abmessung relevanter Hindernisse (Bebauung, Bewuchs, Schallschirme, usw.);
- Lage und Höhe der maßgeblichen Immissionsorte.

Die Berechnung der Beurteilungspegel ist nach Ziffer A.2.3.1 aus /1/ in Oktaven, in der Regel für die Mittenfrequenzen von 63 Hz bis 4000 Hz entsprechend den Vorgaben der DIN ISO 9613-2 /2/ durchzuführen.

Dabei sind in /2/ spezielle Verfahren zur Berechnung der Dämpfung des Schalls festgelegt, welche von einer punktförmigen Schallquelle oder eine Menge von Punktschallquellen ausgehen. Für die Schallquelle Windenergieanlage (WEA) werden alle Teilschallquellen modellhaft zu einer punktförmigen Ersatzschallquelle im Schnittpunkt Gondeldrehachse-Rotordrehachse zusammengefasst. Die Quellhöhe h_Q entspricht der Nabenhöhe über Grund h_N der WEA. Die WEA selbst, wird als hochliegende frei abstrahlende Punktschallquelle behandelt.

Die Verfahren aus /2/ sind als Oktavband-Algorithmus (für die Bandmittenfrequenzen von 63 Hz bis 8000 Hz) ausgelegt und enthalten spezielle Terme für die folgenden physikalischen Effekte:

- Geometrische Ausbreitung;
- Luftabsorption;
- Bodeneffekt;
- Reflexion der Fläche;
- · Abschirmung durch Hindernisse.

Der Einzelschalldruckpegel $L_{r,i}$ an einem IO ist für eine Aufpunkthöhe über Grund h_A (in der Regel 5 m über Grund), der Höhe der Geräuschquelle über Grund h_Q und der projizierten Entfernung s (Quelle zu Aufpunkt) für jede Punktschallquelle in den acht Oktavbändern mit den Bandmittenfrequenzen 63 Hz bis 8000 Hz nach Gleichung 1.2 zu berechnen. Gemäß der Ziff. A.2.3.1 aus /1/ muss der spektrale Anteil der 8000-Hz-Oktave nur in Ausnahmefällen berücksichtigt werden, z. B. bei geringem Abstand eines Immissionsortes. Durch den großen Abstand zwischen WEA als Geräuschquelle und den maßgeblichen Immissionsorten, besitzt die 8000-Hz-Oktave keine Immissionsrelevanz und kann daher vernachlässigt werden.

$$L_{r.i} = L_W + D_C - A - C_{met}$$
 1.2

Dabei ist:

L_w der Oktavband-Schallleistungspegel der Punktschallquelle,

D_C die Richtwertkorrektur,

A die Oktavbanddämpfung,

C_{met} die meteorologische Korrektur.

Der Gesamtschalldruckpegel L_r für einen IO ergibt sich aus der energetischen Addition aller Einzelschalldruckpegel $L_{r,i}$ gemäß Gleichung 1.3:

$$L_r = 10 \log \sum_{i=1}^{N} 10^{0,1 \cdot L_{r,i}}$$
 1.3

Bei der Richtwertkorrektur D_C handelt es sich um ein Maß, welches beschreibt, um wie viel der von der Punktschallquelle erzeugte äquivalente Dauerschalldruckpegel in einer festgelegten Richtung von dem äquivalenten Pegel einer ungerichteten Punktquelle mit einem definierten Schallleistungspegel L_W abweicht. Die Richtwertkorrektur ist dabei abhängig vom Richtwirkungsmaß D_I der Punktquelle zzgl. eines Richtwirkungsmaß D_Ω . Bei einer ins Freie abstrahlenden Punktschallquelle ist nach $\frac{1}{2}D_C = 0$ dB.

Die Oktavbanddämpfung A ergibt sich aus Gleichung 1.4 und ist abhängig von fünf in /2/ definierten Dämpfungstermen.

$$A = A_{div} + A_{atm} + A_{ar} + A_{har} + A_{misc}$$
1.4

Dabei ist:

A_{div} die Dämpfung aufgrund der geometrischen Ausbreitung,

A_{atm} die Dämpfung aufgrund von Luftabsorption,

A_{gr} die Dämpfung aufgrund des Bodeneffekts,

A_{bar} die Dämpfung aufgrund von Abschirmung,

A_{misc} die Dämpfung aufgrund verschiedener anderer Effekte.

Nach /2/ kommt die meteorologische Korrektur C_{met} nach Ziffer 8 aus /2/ zur Anwendung, wenn der Beurteilungspegel einem Langzeitmittelungspegel entspricht. Hier kann das betrachtete Zeitintervall mehrere Monate oder ein Jahr betragen. Die meteorologische Korrektur ist dabei beeinflusst vom Faktor C_0 , der wiederrum von den örtlichen Wetterstatistiken für Windgeschwindigkeit und –Richtung, sowie vom Temperaturgradienten abhängt.

Aufgrund der Tatsache, dass /2/ ausschließlich für die Berechnung der Schallausbreitung für bodennahe Quellen gilt (bis 30 m Höhe zwischen Quelle und Empfänger) ist zur Anpassung des Prognoseverfahrens vom Normausschuss Akustik, Lärmminderung und Schwingungstechnik (NALS) auf Basis neuer Untersuchungsergebnisse sowie auf neuen theoretischen Betrachtungen das Interimsverfahren zur Prognose der Geräuschimmissionen von Windkraftanlagen (Fassung 2015-05.1) /10/ veröffentlicht worden und zur Anwendung bei hochliegenden Quellen (> 30 m) in den Hinweisen des LAI zum Schallimmissionsschutz bei Windkraftanlagen mit Stand 30. Juni 2016 /9/ empfohlen.

Dieses besagt u. a., dass für die nach /2/ zu beschreibende Dämpfung aufgrund des Bodeneffekts A_{gr} ein konstanter Wert von -3 dB anzusetzen ist. Darüber hinaus ist der Wert der meteorologischen Korrektur C_{met} mit 0 dB anzusetzen, d. h. es findet keine meteorlogische Korrektur statt.

Zur Ermittlung des Dämpfungstherms für die Luftabsorption A_{atm} wird der hierzu notwendige Luftabsorptionskoeffizient α aus Tabelle 2 der DIN ISO 9613-2 /2/ für die relative Luftfeuchte 70 % und die Lufttemperatur 10 °C entnommen.

1.3 Tieffrequente Geräusche und Infraschall

Gemäß Ziffer 7.3 TA Lärm /1/ ist im Einzelfall und nach den örtlichen Verhältnissen zu beurteilen, ob von Geräuschen mit einem vorherrschenden Energieanteil im Frequenzbereich unter 90 Hz schädliche Umwelteinwirkungen ausgehen. Darüber hinaus ist in Ziffer 7.3 TA Lärm /1/ festgelegt, dass beim Auftreten derartiger, schädlicher Umwelteinwirkungen geeignete Minderungsmaßnahmen zu treffen sind.

Bis zu welcher Frequenz ein Geräusch als tieffrequent anzusehen ist, ist fachlich nicht eindeutig definiert. Daher sind das Auftreten und die Ausbreitung tieffrequenter Geräusche nur mit hohem Aufwand bei geringer Zuverlässigkeit prognostizierbar.

Eine messtechnische Ermittlung von tieffrequenten Geräuschen ist nach DIN 45680:1997-03 /12/ für Terzbänder mit den Mittenfrequenzen von 10 Hz bis 80 Hz möglich. Zur Analyse, ob ein Geräusch tieffrequent im Sinne von /12/ ist, werden im zuvor genannten Frequenzbereich die Differenzen aus dem messtechnisch ermittelten, C-bewerteten Schalldruckpegeln L_{CF} und den messtechnisch ermittelten, A-bewerteten Schalldruckpegeln L_{AF} gebildet. Ist diese Differenz größer als 20 dB, enthält das Geräusch tieffrequente Anteile. Nach /12/ sind in diesem Fall weitere Untersuchungen vorgeschrieben.

Die Durchführung der oben genannten Minderungsmaßnahmen sind nach Ziffer 7.3 TA Lärm /1/ auszusetzen, wenn nach Inbetriebnahme der Anlage bzw. der Anlagen auch ohne Minderungsmaßnahmen keine tieffrequenten Geräuschanteile auftreten bzw. nachweisbar sind.

Geräusche im Frequenzbereich unter 20 Hz werden im Allgemeinen als Infraschall bezeichnet. In /1/ ist die Thematik nicht explizit geregelt.

Infraschall ist im eigentlichen Sinne nicht hörbar, da eine differenzierte Tonhöhenwahrnehmung für das menschliche Ohr nicht mehr möglich ist. Daher wird Infraschall in der Regel als "pulsierende" Empfindung wahrgenommen und ist abhängig von der sogenannten Wahrnehmungsschwelle. Die Wahrnehmungsschwelle liegt frequenzabhängig zwischen 70 dB(Z) und 100 dB(Z) und damit bei sehr hohen Pegelwerten.

Messungen verschiedener Genehmigungs- und Überwachungsbehörden sowie von renommierten Messinstituten bzw. Prüflaboren haben nachgewiesen, dass die von Windenergieanlagen (WEA) ausgehenden Schalldruckpegel im Frequenzbereich unterhalb von 20 Hz in immissionsrelevanter Entfernung weit unterhalb der menschlichen Wahrnehmungsschwelle liegen. Dies liegt vor allem daran, dass der Hauptenergieanteil des Gesamtgeräusches der WEA im hörbaren Schallbereich zwischen 20 Hz und 20 KHz liegt. Damit werden die geringen Schalldruckpegel der WEA im Infraschallbereich in der Regel durch die Schalldruckpegel des Umgebungsgeräusches verdeckt bzw. überlagert.

Als typische, bedeutende Infraschallquelle sind beispielsweise der Wind und das Meeresrauschen zu nennen, welche wesentlich höhere Schalldruckpegel im Infra- und Hörschallbereich emittieren als WEA. Darüber hinaus beinhaltet das Umgebungsgeräuschspektrum sehr viele Geräuschanteile künstlicher Infraschallquellen, wie beispielsweise Straßen- und Schienenverkehr oder Wärmepumpen und Lüfter.

Das Phänomen ist damit universell und somit nicht speziell kennzeichnend für das Geräuschspektrum von WEA. Wie bereits oben erwähnt, haben unabhängige Untersuchungen gezeigt, dass im relevanten Einwirkungsbereich von WEA keine Schalldruckpegel in der Größenordnung der Wahrnehmbarkeitsschwelle ermittelt wurden.

2 Methode der Prognoseunsicherheit

Hinsichtlich der Unsicherheit der Prognose wird im Bundesland Schleswig-Holstein nach den o. g. Hinweisen des LAI zum Schallimmissionsschutz bei Windenergieanlagen /11/, unter Berücksichtigung der in Kapitel 2.2 definierten Vorgaben, verfahren.

2.1 Ermittlung der Prognoseunsicherheit nach den LAI-Hinweisen 2016 /9/

Die Schallimmissionsprognose ist nach /9/ mit der Unsicherheit der Emissionsdaten (Unsicherheit der Typvermessung σ_R und Unsicherheit der Serienstreuung σ_P) sowie der Unsicherheit des Prognosemodells σ_{Prog} behaftet.

Unsicherheit der Typvermessung oR

Bei einer norm- und richtlinienkonformen Typvermessung der WEA nach FGW-Richtlinie TR1 kann von einer Unsicherheit $\sigma_R = 0.5$ dB ausgegangen werden.

Unsicherheit der Serienstreuung σ_P

Bei einer Mehrfachvermessung aus mindestens drei Einzelmessungen kann für σ_P die Standardabweichung der Messwerte angesetzt werden.

Sollte keine Mehrfachvermessung für die zu beurteilende WEA vorhanden sein, ist für σ_P der Ersatzwert von 1,2 dB zu verwenden.

Unsicherheit des Prognosemodells σ_{Prog}

Nach /9/ wird für die Unsicherheit des Prognosemodells σ_{Prog} der Wert von 1 dB angesetzt.

Gesamtunsicherheit σ_{ges}

Die oben genannten Einzelunsicherheiten werden quadratisch aufaddiert und ergeben die Gesamtunsicherheit σ_{ges} , mit deren Hilfe die obere Vertrauensbereichsgrenze ΔL der prognostizierten Immission (mit einem Vertrauensniveau von 90 %) durch einen Zuschlag abgeschätzt werden kann.

$$\sigma_{ges} = \sqrt{\sigma_R^2 + \sigma_P^2 + \sigma_{Prog}^2}$$
 2.1

$$\Delta L = 1{,}28\sigma_{qes}$$
 2.2

Die Betrachtung der Prognoseunsicherheit wird im weiteren Verlauf emissionsseitig durchgeführt, d.h. der sich durch Gleichung 2.2 ergebene Zuschlag ΔL wird auf den jeweiligen Schallleistungspegel bzw. dem Korrespondieren Oktavspektrum aufaddiert (siehe Gleichung 2.3).

$$L_{WA,90} = L_{WA} + \Delta L 2.3$$

Gesamtimmissionspegel L_{r.90}

Der Gesamtimmissionspegel der oberen Vertrauensbereichsgrenze ergibt sich aus der energetischen Summe der frequenzabhängigen Teilpegeln der oberen Vertrauensbereichsgrenze (siehe Gleichung 2.4)

$$L_{r,90} = 10 \cdot \log \sum_{i=63Hz}^{8000Hz} 10^{0,1 \cdot L_{WA,90,Okt,i} - A_i}$$
2.4

Dabei ist:

L_{WA,90,Okt,i} Oktavschallleistungspegel der oberen Vertrauensbereichsgrenze der Oktavbandmitten-

frequenzen von 63 Hz bis 8000 Hz

A_i: Dämpfungskoeffizienten gemäß /2/ unter Berücksichtigung von /10/

2.2 Gesonderte Vorgaben für das Bundesland Schleswig-Holstein

Unabhängig der Art der Emissionsdaten (Herstellerangaben, Einfach- oder Mehrfachvermessungen) ist im Vollzug des Bundeslandes Schleswig-Holstein geregelt, dass grundsätzlich eine Abnahmemessung an der zu beurteilenden WEA zu erfolgen hat. Daher kann auf eine Berücksichtigung der Serienstreuung σ_P verzichtet werden. Die Gesamtunsicherheit σ_{ges} ist damit ausschließlich abhängig von der Unsicherheit der Typvermessung σ_R = 0,5 dB(A) und der Unsicherheit des Prognosemodells σ_{Prog} = 1,0 dB(A). Folglich ergibt sich damit ein zu berücksichtigender Wert von σ_{ges} = 1,1 dB(A) bzw. einem Zuschlag von ΔL = 1,43 dB(A).

Gemäß dem Konzept zum Umgang mit bestehenden WEA bei der Beurteilung der Schallimmission durch das Interimsverfahren des Landesamts für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein LLUR /18/ vom 25.05.2018 ist der pauschale Zuschlag von $\Delta L = 1,43$ dB(A) auch bei bestehenden WEA zu berücksichtigen.

3 Standort- und Projektbeschreibung

Am Standort Böxlund ist geplant zwei Windenergieanlagen des Typs ENERCON E-160 EP5 E3 R1 / 5560 kW und eine ENERCON E-138 EP3 E3 / 4260 kW mit TES neu zu errichten.

Der zu untersuchende Windpark befindet sich ca. 2,5 km nordwestlich des Ortes Böxlund. Südlich der geplanten WEA befindet sich in 3 km Entfernung die Ortschaft Weesby. Die entsprechenden Gemeinden liegen auf dem Gebiet des Landkreises Schleswig-Flensburg.

Das Gelände am Standort des Windparks ist weitgehend eben und offen. Die Höhe über Normalnull (Höhe ü. NN) liegt im Bereich der WEA-Standorte bei etwa 15 m. Das verwendete digitale Höhenmodell ist in Anlage 10.9 dargestellt.

Eine Übersicht über die Anlagen der Vor- und Zusatzbelastung sowie der betrachteten Immissionsorte sind in Abbildung 3.1 (und zusätzlich in Anlage 10.8) dargestellt sowie in Tabelle 3.1 und Tabelle 3.2 aufgeführt.

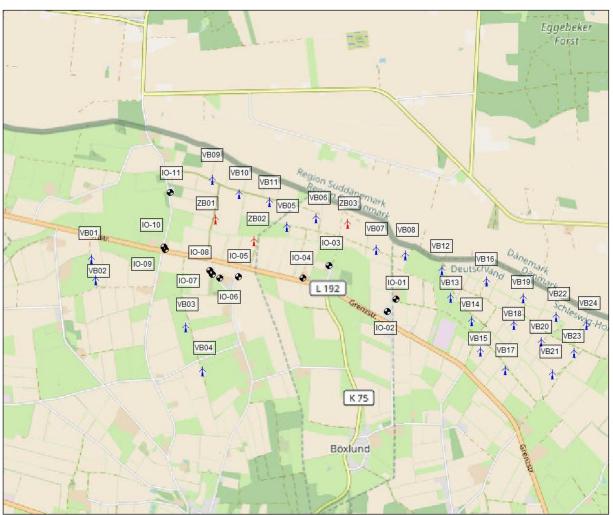


Abbildung 3.1: Lageplan Böxlund (© OpenStreetMap-Mitwirkende)

Tabelle 3.1: Übersicht der Emittenten für die Berechnung

WND-consult Genehmigungsbescheid Na. /m P. / kWe WEA der Vorbelastung V801 640/2010/135 ENERCON E-101 1010505 99 3050 V802 640/2011/141 Senvicon 3.2M114 300401 93 3200 V803 640/2011/142 Senvicon 3.2M114 300402 93 3200 V806 640/2012/004 Senvicon 3.2M114 300601 93 3200 V806 640/2012/005 Senvicon 3.2M114 300601 93 3200 V807 640/2012/006 Senvicon 3.2M114 300601 93 3200 V808 640/2012/006 Senvicon 3.2M114 300602 93 3200 V809 640/2012/010 Senvicon 3.2M114 300629 93 3200 V810 640/2012/010 Senvicon 3.2M114 300602 93 3200 V811 640/2012/013 Senvicon 3.2M114 300602 123 3200 V812 640/2012/013 Senvicon 3.2M114 300621 123 3200 <th>Bezeichnung</th> <th>Aktenzeichen</th> <th>Тур</th> <th>Seriennummer</th> <th>Nabenhöhe</th> <th>Nennleistung</th>	Bezeichnung	Aktenzeichen	Тур	Seriennummer	Nabenhöhe	Nennleistung
VB01 G40/2010/135 ENERCON E-101 1010505 99 3050 VB02 G40/2010/136 ENERCON E-101 1010506 99 3050 VB03 G40/2011/141 Senvion 3.2M114 300401 93 3200 VB04 G40/2011/142 Senvion 3.2M114 300402 93 3200 VB05 G40/2012/004 Senvion 3.2M114 300603 93 3200 VB06 G40/2012/005 Senvion 3.2M114 300603 93 3200 VB07 G40/2012/006 Senvion 3.2M114 300601 93 3200 VB08 G40/2012/010 Senvion 3.2M114 300629 93 3200 VB10 G40/2012/001 Senvion 3.2M114 300598 93 3200 VB11 G40/2012/002 Senvion 3.2M114 300600 93 3200 VB12 G40/2012/013 Senvion 3.2M114 300620 123 3200 VB13 G40/2012/013 Senvion 3.2M114 300621 123 3200	WIND-consult	Genehmigungsbescheid			h _N /m	P _n / kW
VB02 G40/2010/136 ENERCON E-101 1010506 99 3050 VB03 G40/2011/141 Senvion 3.2M114 300401 93 3200 VB04 G40/2011/142 Senvion 3.2M114 300402 93 3200 VB05 G40/2012/004 Senvion 3.2M114 300603 93 3200 VB06 G40/2012/006 Senvion 3.2M114 300601 93 3200 VB07 G40/2012/010 Senvion 3.2M114 3006029 93 3200 VB08 G40/2012/010 Senvion 3.2M114 300629 93 3200 VB09 G40/2012/001 Senvion 3.2M114 300598 93 3200 VB10 G40/2012/002 Senvion 3.2M114 300609 93 3200 VB11 G40/2012/003 Senvion 3.2M114 300600 93 3200 VB12 G40/2012/013 Senvion 3.2M114 300621 123 3200 VB13 G40/2012/014 Senvion 3.2M114 300622 123 3200	WEA der Vorbelastung					
V803 G40/2011/141 Senvion 3.2M114 300401 93 3200 V804 G40/2011/142 Senvion 3.2M114 300402 93 3200 V805 G40/2012/004 Senvion 3.2M114 300603 93 3200 V806 G40/2012/006 Senvion 3.2M114 300601 93 3200 V807 G40/2012/006 Senvion 3.2M114 300629 93 3200 V808 G40/2012/001 Senvion 3.2M114 300529 93 3200 V810 G40/2012/002 Senvion 3.2M114 300599 93 3200 V811 G40/2012/003 Senvion 3.2M114 300600 93 3200 V812 G40/2012/011 Senvion 3.2M114 300620 123 3200 V813 G40/2012/013 Senvion 3.2M114 300621 123 3200 V814 G40/2012/014 Senvion 3.2M114 300622 123 3200 V815 G40/2012/015 Senvion 3.2M114 300625 123 3200	VB01	G40/2010/135	ENERCON E-101	1010505	99	3050
V8044 G40/2011/142 Senvior 3.2M114 300402 93 3200 V805 G40/2012/004 Senvior 3.2M114 300748 93 3200 V806 G40/2012/005 Senvior 3.2M114 300603 93 3200 V807 G40/2012/006 Senvior 3.2M114 300629 93 3200 V808 G40/2012/001 Senvior 3.2M114 300599 93 3200 V809 G40/2012/002 Senvior 3.2M114 300599 93 3200 V810 G40/2012/003 Senvior 3.2M114 300600 93 3200 V811 G40/2012/011 Senvior 3.2M114 300620 123 3200 V812 G40/2012/013 Senvior 3.2M114 300621 123 3200 V814 G40/2012/014 Senvior 3.2M114 300622 123 3200 V815 G40/2012/015 Senvior 3.2M114 300625 123 3200 V816 G40/2012/016 Senvior 3.2M114 300624 123 3200 <td>VB02</td> <td>G40/2010/136</td> <td>ENERCON E-101</td> <td>1010506</td> <td>99</td> <td>3050</td>	VB02	G40/2010/136	ENERCON E-101	1010506	99	3050
VB05 G40/2012/004 Senvion 3.2M114 300748 93 3200 VB06 G40/2012/006 Senvion 3.2M114 300603 93 3200 VB07 G40/2012/006 Senvion 3.2M114 300601 93 3200 VB08 G40/2012/010 Senvion 3.2M114 300629 93 3200 VB09 G40/2012/001 Senvion 3.2M114 300598 93 3200 VB10 G40/2012/002 Senvion 3.2M114 300609 93 3200 VB11 G40/2012/003 Senvion 3.2M114 300600 93 3200 VB12 G40/2012/011 Senvion 3.2M114 300620 123 3200 VB13 G40/2012/013 Senvion 3.2M114 300621 123 3200 VB14 G40/2012/014 Senvion 3.2M114 300622 123 3200 VB15 G40/2012/015 Senvion 3.2M114 300625 123 3200 VB16 G40/2012/016 Senvion 3.2M114 300624 123 3200	VB03	G40/2011/141	Senvion 3.2M114	300401	93	3200
VB06 G40/2012/005 Senvion 3.2M114 300603 93 3200 VB07 G40/2012/006 Senvion 3.2M114 300601 93 3200 VB08 G40/2012/010 Senvion 3.2M114 300629 93 3200 VB09 G40/2012/001 Senvion 3.2M114 300598 93 3200 VB10 G40/2012/002 Senvion 3.2M114 300600 93 3200 VB11 G40/2012/003 Senvion 3.2M114 300600 93 3200 VB12 G40/2012/011 Senvion 3.2M114 300620 123 3200 VB13 G40/2012/013 Senvion 3.2M114 300621 123 3200 VB14 G40/2012/014 Senvion 3.2M114 300622 123 3200 VB15 G40/2012/015 Senvion 3.2M114 300625 123 3200 VB16 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 <td>VB04</td> <td>G40/2011/142</td> <td>Senvion 3.2M114</td> <td>300402</td> <td>93</td> <td>3200</td>	VB04	G40/2011/142	Senvion 3.2M114	300402	93	3200
VB07 G40/2012/006 Senvion 3.2M114 300601 93 3200 VB08 G40/2012/010 Senvion 3.2M114 300629 93 3200 VB09 G40/2012/001 Senvion 3.2M114 300598 93 3200 VB10 G40/2012/002 Senvion 3.2M114 300599 93 3200 VB11 G40/2012/003 Senvion 3.2M114 300600 93 3200 VB12 G40/2012/011 Senvion 3.2M114 300620 123 3200 VB13 G40/2012/013 Senvion 3.2M114 300621 123 3200 VB14 G40/2012/014 Senvion 3.2M114 300622 123 3200 VB15 G40/2012/015 Senvion MM92 93130 100 2050 VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB18 G40/2013/161 Vestas V112-3.0 MW - 119 3075 VB19 G40/2012/017 Senvion 3.2M114 300626 123 3200	VB05	G40/2012/004	Senvion 3.2M114	300748	93	3200
VB08 G40/2012/010 Senvion 3.2M114 300629 93 3200 VB09 G40/2012/001 Senvion 3.2M114 300598 93 3200 VB10 G40/2012/002 Senvion 3.2M114 300599 93 3200 VB11 G40/2012/003 Senvion 3.2M114 300600 93 3200 VB12 G40/2012/011 Senvion 3.2M114 300620 123 3200 VB13 G40/2012/013 Senvion 3.2M114 300621 123 3200 VB14 G40/2012/014 Senvion 3.2M114 300622 123 3200 VB15 G40/2012/015 Senvion 3.2M114 300625 123 3200 VB16 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB17 G40/2013/161 Vestas V112-3.0 MW - 119 3075 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/018 Senvion 3.2M114 300626 123 3200 <td>VB06</td> <td>G40/2012/005</td> <td>Senvion 3.2M114</td> <td>300603</td> <td>93</td> <td>3200</td>	VB06	G40/2012/005	Senvion 3.2M114	300603	93	3200
VB09 G40/2012/001 Senvion 3.2M114 300598 93 3200 VB10 G40/2012/002 Senvion 3.2M114 300599 93 3200 VB11 G40/2012/003 Senvion 3.2M114 300600 93 3200 VB12 G40/2012/011 Senvion 3.2M114 300620 123 3200 VB13 G40/2012/013 Senvion 3.2M114 300621 123 3200 VB14 G40/2012/014 Senvion 3.2M114 300622 123 3200 VB15 G40/2012/015 Senvion 3.2M114 300625 123 3200 VB16 G40/2012/012 Senvion MM92 93130 100 2050 VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB18 G40/2012/016 Senvion 3.2M114 300623 123 3200 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/018 Senvion 3.2M114 300626 123 3200	VB07	G40/2012/006	Senvion 3.2M114	300601	93	3200
VB10 G40/2012/002 Senvion 3.2M114 300599 93 3200 VB11 G40/2012/003 Senvion 3.2M114 300600 93 3200 VB12 G40/2012/011 Senvion 3.2M114 300620 123 3200 VB13 G40/2012/013 Senvion 3.2M114 300621 123 3200 VB14 G40/2012/014 Senvion 3.2M114 300622 123 3200 VB15 G40/2012/015 Senvion 3.2M114 300622 123 3200 VB16 G40/2012/012 Senvion MM92 93130 100 2050 VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB18 G40/2012/016 Senvion 3.2M114 300623 123 3200 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/017 Senvion 3.2M114 300626 123 3200 VB21 G40/2013/160 Vestas V112-3.0 MW - 119 3075	VB08	G40/2012/010	Senvion 3.2M114	300629	93	3200
VB11 G40/2012/003 Senvion 3.2M114 300600 93 3200 VB12 G40/2012/011 Senvion 3.2M114 300620 123 3200 VB13 G40/2012/013 Senvion 3.2M114 300621 123 3200 VB14 G40/2012/014 Senvion 3.2M114 300622 123 3200 VB15 G40/2012/015 Senvion 3.2M114 300625 123 3200 VB16 G40/2012/012 Senvion MM92 93130 100 2050 VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB18 G40/2013/161 Vestas V112-3.0 MW - 119 3075 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/017 Senvion 3.2M114 300628 123 3200 VB21 G40/2012/018 Senvion 3.2M114 300628 123 3200 VB22 G40/2012/019 Senvion 3.6 M114 - 119 3075	VB09	G40/2012/001	Senvion 3.2M114	300598	93	3200
VB12 G40/2012/011 Senvion 3.2M114 300620 123 3200 VB13 G40/2012/013 Senvion 3.2M114 300621 123 3200 VB14 G40/2012/014 Senvion 3.2M114 300622 123 3200 VB15 G40/2012/015 Senvion 3.2M114 300625 123 3200 VB16 G40/2012/012 Senvion MM92 93130 100 2050 VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB18 G40/2013/161 Vestas V112-3.0 MW - 119 3075 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/017 Senvion 3.2M114 300628 123 3200 VB21 G40/2013/160 Vestas V112-3.0 MW - 119 3075 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200	VB10	G40/2012/002	Senvion 3.2M114	300599	93	3200
VB13 G40/2012/013 Senvion 3.2M114 300621 123 3200 VB14 G40/2012/014 Senvion 3.2M114 300622 123 3200 VB15 G40/2012/015 Senvion 3.2M114 300625 123 3200 VB16 G40/2012/012 Senvion MM92 93130 100 2050 VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB18 G40/2013/161 Vestas V112-3.0 MW - 119 3075 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/017 Senvion 3.2M114 300626 123 3200 VB21 G40/2012/018 Senvion 3.2M114 300628 123 3200 VB22 G40/2013/160 Vestas V112-3.0 MW - 119 3675 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200	VB11	G40/2012/003	Senvion 3.2M114	300600	93	3200
VB14 G40/2012/014 Senvion 3.2M114 300622 123 3200 VB15 G40/2012/015 Senvion 3.2M114 300625 123 3200 VB16 G40/2012/012 Senvion MM92 93130 100 2050 VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB18 G40/2013/161 Vestas V112-3.0 MW - 119 3075 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/017 Senvion 3.2M114 300626 123 3200 VB21 G40/2012/018 Senvion 3.2M114 300628 123 3200 VB22 G40/2013/160 Vestas V112-3.0 MW - 119 3075 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120	VB12	G40/2012/011	Senvion 3.2M114	300620	123	3200
VB15 G40/2012/015 Senvion 3.2M114 300625 123 3200 VB16 G40/2012/012 Senvion MM92 93130 100 2050 VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB18 G40/2013/161 Vestas V112-3.0 MW - 119 3075 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/017 Senvion 3.2M114 300626 123 3200 VB21 G40/2012/018 Senvion 3.2M114 300628 123 3200 VB22 G40/2013/160 Vestas V112-3.0 MW - 119 3075 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB13	G40/2012/013	Senvion 3.2M114	300621	123	3200
VB16 G40/2012/012 Senvion MM92 93130 100 2050 VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB18 G40/2013/161 Vestas V112-3.0 MW - 119 3075 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/017 Senvion 3.2M114 300626 123 3200 VB21 G40/2012/018 Senvion 3.2M114 300628 123 3200 VB22 G40/2013/160 Vestas V112-3.0 MW - 119 3075 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB14	G40/2012/014	Senvion 3.2M114	300622	123	3200
VB17 G40/2012/016 Senvion 3.2M114 300624 123 3200 VB18 G40/2013/161 Vestas V112-3.0 MW - 119 3075 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/017 Senvion 3.2M114 300626 123 3200 VB21 G40/2012/018 Senvion 3.2M114 300628 123 3200 VB22 G40/2013/160 Vestas V112-3.0 MW - 119 3075 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB15	G40/2012/015	Senvion 3.2M114	300625	123	3200
VB18 G40/2013/161 Vestas V112-3.0 MW - 119 3075 VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/017 Senvion 3.2M114 300626 123 3200 VB21 G40/2012/018 Senvion 3.2M114 300628 123 3200 VB22 G40/2013/160 Vestas V112-3.0 MW - 119 3075 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB16	G40/2012/012	Senvion MM92	93130	100	2050
VB19 G40/2012/020 Senvion 3.2M114 300623 123 3200 VB20 G40/2012/017 Senvion 3.2M114 300626 123 3200 VB21 G40/2012/018 Senvion 3.2M114 300628 123 3200 VB22 G40/2013/160 Vestas V112-3.0 MW - 119 3075 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB17	G40/2012/016	Senvion 3.2M114	300624	123	3200
VB20 G40/2012/017 Senvion 3.2M114 300626 123 3200 VB21 G40/2012/018 Senvion 3.2M114 300628 123 3200 VB22 G40/2013/160 Vestas V112-3.0 MW - 119 3075 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB18	G40/2013/161	Vestas V112-3.0 MW	-	119	3075
VB21 G40/2012/018 Senvion 3.2M114 300628 123 3200 VB22 G40/2013/160 Vestas V112-3.0 MW - 119 3075 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB19	G40/2012/020	Senvion 3.2M114	300623	123	3200
VB22 G40/2013/160 Vestas V112-3.0 MW - 119 3075 VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB20	G40/2012/017	Senvion 3.2M114	300626	123	3200
VB23 G40/2018/207 Senvion 3.6 M114 - 119 3600 VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB21	G40/2012/018	Senvion 3.2M114	300628	123	3200
VB24 G40/2012/019 Senvion 3.2M114 300627 123 3200 WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB22	G40/2013/160	Vestas V112-3.0 MW	-	119	3075
WEA der Zusatzbelastung ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB23	G40/2018/207	Senvion 3.6 M114	-	119	3600
ZB01 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560 ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	VB24	G40/2012/019	Senvion 3.2M114	300627	123	3200
ZB02 ENERCON E-160 EP5 E3 R1 / 5560 kW 120 5560	WEA der Zusatzbelastun	g				
<u> </u>	ZB01		ENERCON E-160 EP5 E3 R1 / 5560 kW		120	5560
ZB03 ENERCON E-138 EP3 E3 / 4260 kW mit TES 111 4260	ZB02		ENERCON E-160 EP5 E3 R1 / 5560 kW		120	5560
	ZB03		ENERCON E-138 EP3 E3 / 4260 kW mit TES		111	4260

Gemäß den Angaben vom Landesamt für Umwelt des Landes Schleswig-Holstein befinden sich die WEA der Vorbelastung VB01 bis VB22 und VB24 in Betrieb. Die WEA der Vorbelastung VB23 befindet sich mit Stand des vorliegen Berichts im Genehmigungsverfahren.

Ca. 100 m neben dem Immissionsort IO-04 befindet sich eine Kleinwindenergieanlage (KWEA) vom Typ EasyWind 6 AC. Diese wird aufgrund von Eigennutzung für diesen Immissionsort nicht betrachtet. Auf die übrigen Immissionsorte hat die KWEA keinen immissionsrelevanten Einfluss, da die Immissionsorte nicht im Einwirkungsbereichs der KWEA liegen.

Tabelle 3.2: Übersicht der Immissionsorte für die Berechnung

Immissionsort	Adresse
IO-01	Erlenweg 4, Jardelund
IO-02	Erlenweg 5, Böxlund
IO-03	Grenzauweg 3, Böxlund
IO-04	Grenzstraße 1, Böxlund
IO-05	Weesbydamm 14, Weesby
IO-06	Kjerweg 4, Weesby
IO-07	Kjerweg 3, Weesby
IO-08	Kjerweg 1, Weesby
IO-09	Bögelhuus 2, Weesby
IO-10	Bögelhuus 2a, Weesby
IO-11	Bögelhuus 4, Weesby

4 Eingangsdaten für die Berechnung

Mit Blick auf die zu beurteilenden Anlagen - Windenergieanlagen (WEA) - sind zur fachtechnischen Evaluierung der Emissionsparameter die Hinweise des LAI zum Schallimmissionsschutz für WEA aus dem Jahr 2016 /9/ zu berücksichtigen.

Die für die Berechnung notwendigen Eingabeparameter für alle WEA, Immissionsorte und evtl. vorhandene gewerbliche Vorbelastung werden im Folgenden ausführlich dargestellt.

4.1 Koordinatensystem und Koordinaten

Für die Berechnungen wurden Koordinaten im Bezugssystem ETRS 89 mit UTM-Abbildung – 6°-Zonensystem, vorangestellte Zone 32 verwendet.

Die Koordinaten der Immissionsorte und der Windenergieanlagen sowie die projizierten Entfernungen etc. sind in den Tabellen von Anhang 10.1, Anhang 10.2 und Anhang 10.14 aufgeführt. Die Bezugshöhe an den Immissionsorten beträgt unter Berücksichtigung der vorhandenen Bebauung jeweils 5 m über Grund.

4.2 Parameter der Emissionsquelle – Vorbelastung

Die Vorbelastung umfasst insgesamt 24 WEA verschiedenen Typs. In Anhang 10.8 werden die WEA der Vorbelastung grafisch blau dargestellt. Die schalltechnischen Parameter aller Anlagentypen sind in Tabelle 4.1 zusammengefasst und wurden von den jeweils zuständigen Genehmigungsbehörden übermittelt.

Tabelle 4.1: Schalltechnische Parameter – Vorbelastung

Bez.	WEA-Typ	Beurteilungs- zeitraum	Betriebs- weise	Nenn- leistung	Emissionspara	Emissionsparameter					
				P _n / kW	L _w / dB(A)	σ _R / dB	σ _{Prog} / dB	ΔL / dB	L _{WA,90} / dB(A)		
VB01	ENERCON E-101	Nacht	Standard	3050	103,7	0,5	1,0	1,43	105,1		
		Tag	Standard	3050	103,7	0,5	1,0	1,43	105,1		
VB02	ENERCON E-101	Nacht	Standard	3050	104,2	0,5	1,0	1,43	105,6		
		Tag	Standard	3050	104,2	0,5	1,0	1,43	105,6		
VB03	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6		
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6		
VB04	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6		
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6		
VB05	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6		
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6		
VB06	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6		
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6		
VB07	Senvion 3.2M114	Nacht	Reduziert	3200	102,9	0,5	1,0	1,43	104,3		
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6		
VB08	Senvion 3.2M114	Nacht	Standard	3200	103,2	0,5	1,0	1,43	104,6		
		Tag	Standard	3200	103,2	0,5	1,0	1,43	104,6		
VB09	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6		
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6		

Bez.	WEA-Typ	Beurteilungs- zeitraum	Betriebs- weise	Nenn- leistung	Emissionsparameter				
				P _n / kW	L _w / dB(A)	σ _R / dB	σ _{Prog} / dB	ΔL / dB	L _{WA,90} / dB(A)
VB10	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
VB11	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
VB12	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
VB13	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
VB14	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
VB15	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
VB16	Senvion MM92	Nacht	Standard	2050	104,2	0,5	1,0	1,43	105,6
		Tag	Standard	2050	104,2	0,5	1,0	1,43	105,6
VB17	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
VB18	Vestas	Nacht	Standard	3075	106,5	0,5	1,0	1,43	107,9
	V112-3.0 MW	Tag	Standard	3075	106,5	0,5	1,0	1,43	107,9
VB19	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
VB20	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
VB21	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
VB22	Vestas	Nacht	Standard	3075	106,5	0,5	1,0	1,43	107,9
	V112-3.0 MW	Tag	Standard	3075	106,5	0,5	1,0	1,43	107,9
VB23	Senvion 3.6 M114	Nacht	Reduziert	3600	102,3	0,5	1,0	1,43	103,7
		Tag	Standard	3600	105,2	0,5	1,0	1,43	106,6
VB24	Senvion 3.2M114	Nacht	Standard	3200	105,2	0,5	1,0	1,43	106,6
		Tag	Standard	3200	105,2	0,5	1,0	1,43	106,6
		_							

Für die Kenngrößen Tonhaltigkeit und Impulshaltigkeit wurden von den Genehmigungsbehörden keine immissionsrelevanten Zuschläge angegeben. Demzufolge werden keine Zuschläge angesetzt.

Es wird unterstellt, dass das Anlagengeräusch keine vorherrschenden Energieanteile im Frequenzbereich unterhalb von 90 Hz aufweist, so dass Ziffer 7.3 aus /1/ nicht von schädlichen Umwelteinwirkungen durch tieffrequente Geräusche auszugehen ist (vgl. Kapitel 1.3).

Für die WEA der Vorbelastung VB03 bis VB24 wurden von der Genehmigungsbehörde Summenschallleistungspegel für die Beurteilungszeiträume Nacht und Tag zur Verfügung gestellt. Für die weitere Berechnung wurde das in /9/ aufgeführte Referenzspektrum verwendet.

Die für die Berechnung der Vorbelastung verwendeten Oktavspektren sind in Anhang 10.1 aufgeführt.

4.3 Parameter der Emissionsquelle – Zusatzbelastung

Die Zusatzbelastung umfasst drei WEA unterschiedlichen Typs. In Anhang 10.8 werden die WEA der Zusatzbelastung grafisch rot dargestellt. Die schalltechnischen Parameter des Anlagentyps sind in Tabelle 4.2 zusammengefasst und basieren auf Herstellerangaben /15/, /16/, /17/, /19/, /20/.

Tabelle 4.2: Schalltechnische Parameter – Zusatzbelastung

Bez.	WEA-Typ	Beurteilungs-	Betriebs-	Nennleistung	Emissions	missionsdaten					
		zeitraum	weise	P _n / kW	L _w / dB(A)	σ _R / dB	σ _{Prog} / dB	ΔL / dB	L _{WA,90} / dB(A)		
ZB01	ENERCON E-160 EP5 E3 R1	Tag	0 s-1	5560	106,8	0,5	1,0	1,43	108,2		
	L-100 Li 3 L3 K1	Nacht	NR II s-1	5270	105,2	0,5	1,0	1,43	106,6		
ZB02	ENERCON E-160 EP5 E3 R1	Tag	0 s-1	5560	106,8	0,5	1,0	1,43	108,2		
	L-100 LF3 L3 K1	Nacht	NR VII s-1	4400	102,1	0,5	1,0	1,43	103,5		
ZB03	ENERCON E-138 EP3 E3	Tag	0 s	4260	106,0	0,5	1,0	1,43	107,4		
	E-130 EF3 E3 -	Nacht	101,0 dB	3000	101,0	0,5	1,0	1,43	102,4		

Für die Kenngrößen Tonhaltigkeit und Impulshaltigkeit sind nach Herstellerangaben keine immissionsrelevanten Zuschläge angegeben. Demzufolge werden keine Zuschläge angesetzt.

Es wird unterstellt, dass das Anlagengeräusch keine vorherrschenden Energieanteile im Frequenzbereich unterhalb von 90 Hz aufweist, so dass gemäß Ziffer 7.3 aus /1/ nicht von schädlichen Umwelteinwirkungen durch tieffrequente Geräusche auszugehen ist (vgl. Kapitel 1.3).

Zur Berechnung der Schallimmission durch Windenergieanlagen nach /9/ ist das zum Schallleistungspegel dazugehörige Oktavspektrum maßgeblich. Die für die Berechnung der Zusatzbelastung verwendeten Oktavspektren sind in Anhang 10.1 aufgeführt.

4.4 Immissionsorte

Die zu berücksichtigenden Immissionsorte wurden im Ergebnis der Standortbegehung vom 06.06.2023 durch einen Mitarbeiter der WIND-consult GmbH und anhand der kartografischen Grundlagen festgelegt. Die Festlegung der Randbedingungen wie Koordinaten und Einstufung nach baulicher Nutzung erfolgte in Abstimmung mit dem Landesamt für Umwelt Schleswig-Holstein (LfU-SH). Die Lage und Bezeichnung der Immissionsorte gehen aus Anhang 10.2 in Verbindung mit Tabelle 4.3 hervor.

Tabelle 4.3: Immissionsorte

Bez.	Adresse	Einstufung nach	Immissionsrichtwerte			
		baulicher Nutzung	Tag / dB(A)	Nacht / dB(A)		
IO-01	Erlenweg 4, Jardelund	Kern-/Dorf-/Mischgebiet	60	45		
IO-02	Erlenweg 5, Böxlund	Kern-/Dorf-/Mischgebiet	60	45		
10-03	Grenzauweg 3, Böxlund	Kern-/Dorf-/Mischgebiet	60	45		
10-04	Grenzstraße 1, Böxlund	Kern-/Dorf-/Mischgebiet	60	45		
10-05	Weesbydamm 14, Weesby	Kern-/Dorf-/Mischgebiet	60	45		
10-06	Kjerweg 4, Weesby	Kern-/Dorf-/Mischgebiet	60	45		
10-07	Kjerweg 3, Weesby	Kern-/Dorf-/Mischgebiet	60	45		
10-08	Kjerweg 1, Weesby	Kern-/Dorf-/Mischgebiet	60	45		
10-09	Bögelhuus 2, Weesby	Kern-/Dorf-/Mischgebiet	60	45		
IO-10	Bögelhuus 2a, Weesby	Kern-/Dorf-/Mischgebiet	60	45		
IO-11	Bögelhuus 4, Weesby	Kern-/Dorf-/Mischgebiet	60	45		

5 Ergebnisse

Auf Basis der vorangegangenen, erläuterten Emissionsparameter erfolgt die Berechnung der Schallimmission.

Die Berechnungen werden mit dem Computerprogramm IMMI Version 2023 der Firma Wölfel durchgeführt, das gemäß dem Stand der Technik streng auf der Grundlage der entsprechenden Normen arbeitet.

Im Ergebnis werden die Vorbelastung (sofern sich die maßgeblichen Immissionsorte im Einwirkungsbereich relevanter Geräuschquellen befinden), die Zusatzbelastung und die sich ergebende Gesamtbelastung ermittelt.

Die in Tabelle 5.1 bis Tabelle 5.3 aufgeführten Ergebnisse entsprechen den Beurteilungspegeln der oberen Vertrauensbereichsgrenze mit einer statistischen Sicherheit von 90% ($L_{r,90}$) und werden basierend auf den Anforderungen aus /9/ nach den Rundungsregeln der DIN 1333 /13/ Ziffer 4.5.1 als ganzzahlige Werte angegeben. Informativ werden die Ergebnisse mit einer Nachkommastelle in eckigen Klammern dargestellt. Dabei werden die um 1 dB überschrittenen Gesamtimmissionspegel fett markiert und die um mehr als 1 dB überschrittenen Gesamtimmissionspegel in rot und fett markiert.

Die Ergebnisse werden für die Beurteilungszeiträume Tag und Nacht angegeben. Zusätzlich erfolgt eine Darstellung der Ergebnisse für Sonn- und Feiertage. Hierbei gilt zu beachten, dass hier unter Umständen Ruhezeitzuschläge zu vergeben sind (vgl. Kapitel 1.2).

Für den Beurteilungszeitraum Nacht sind in Anhang 10.10 bis Anhang 10.12 die Rasterlärmkarten der Vor-, Zusatz- und Gesamtbelastung dargestellt. Die detaillierten Ergebnisse (Einzelpunktberechnung) der Gesamtbelastung im Beurteilungszeitraum Nacht sind in Anhang 10.14 als A-bewertete Summenpegel der spektralen Anteile aufgeführt. Die spektralen Anteile können auf Anfrage nachgereicht werden.

Nach dem MELUND-Erlass 2018 /11/ ergeben sich die hier aufgeführten Beurteilungspegel der oberen Vertrauensbereichsgrenze aus den Teilimmissionspegeln, die weniger als 12 dB(A) unter den maßgebenden Immissionsrichtwerten liegen und nach /11/ als relevant gelten. In Anhang 10.9 werden relevante Teilimmissionspegel schwarz, die nicht relevanten Teilimmissionspegel grau dargestellt. Im Anhang 10.10 werden die Teilimmissionspegel aller WEA für den Beurteilungszeitraum Tag dargestellt. Da sich alle Teilimmissionspegel des Beurteilungszeitraums Tag mehr als 12 dB(A) unter den maßgebenden Immissionsrichtwerten befinden, wird in der folgenden Ergebnisbetrachtung ausschließlich der Beurteilungszeitraum Nacht dargestellt.

5.1 Vorbelastung

Tabelle 5.1: Ergebnisse Vorbelastung

Immissionsberechnung Vorbelastung	Beurteilung nach TA Lärm (1998)		
		Beurtei	ilungszeitraum Nacht (22h-6h)
Immissionsorte	Adresse	IRW	$L_{r,90,VB}$
		/dB(A)	/dB(A)
IO-01	Erlenweg 4, Jardelund	45	47 [46,74]
IO-02	Erlenweg 5, Böxlund	45	45 [44,61]
IO-03	Grenzauweg 3, Böxlund	45	46 [45,72]
10-04	Grenzstraße 1, Böxlund	45	44 [44,45]
IO-05	Weesbydamm 14, Weesby	45	44 [44,22]
IO-06	Kjerweg 4, Weesby	45	44 [43,77]
10-07	Kjerweg 3, Weesby	45	44 [43,81]
IO-08	Kjerweg 1, Weesby	45	44 [43,72]
IO-09	Bögelhuus 2, Weesby	45	43 [42,81]
IO-10	Bögelhuus 2a, Weesby	45	43 [42,78]
IO-11	Bögelhuus 4, Weesby	45	44 [44,13]

Durch die WEA der Vorbelastung werden die maßgebenden Immissionsrichtwerte am Immissionsort IO-01 um mehr als 1 dB(A) überschritten. Am den Immissionsort IO-03 wird der maßgebende Immissionsrichtwert um nicht mehr als 1 dB(A) überschritten.

5.2 Zusatzbelastung

Tabelle 5.2: Ergebnisse Zusatzbelastung

Immissionsberechnung Zusatzbelastung	Beurteilung nach TA Lärm (1998)		
		Beurtei	lungszeitraum Nacht (22h-6h)
Immissionsorte	Adresse	IRW	$L_{r,90,VB}$
		/dB(A)	/dB(A)
IO-01	Erlenweg 4, Jardelund	45	
IO-02	Erlenweg 5, Böxlund	45	
IO-03	Grenzauweg 3, Böxlund	45	37 [37,26]
IO-04	Grenzstraße 1, Böxlund	45	35 [35,15]
IO-05	Weesbydamm 14, Weesby	45	42 [42,18]
IO-06	Kjerweg 4, Weesby	45	41 [41,35]
10-07	Kjerweg 3, Weesby	45	41 [41,34]
IO-08	Kjerweg 1, Weesby	45	42 [41,88]
IO-09	Bögelhuus 2, Weesby	45	39 [39,05]
IO-10	Bögelhuus 2a, Weesby	45	39 [39,11]
IO-11	Bögelhuus 4, Weesby	45	40 [40,21]

Die durch die WEA der Zusatzbelastung verursachten Teilimmissionspegel liegen an den Immissionsorten IO-01 und IO-02 jeweils mehr als 12 dB(A) unter dem maßgebenden Immissionsrichtwert. Damit befinden sich diese Immissionsorte nach /11/ außerhalb des Einwirkungsbereichs der Zusatzbelastung und müssen somit nicht betrachtet werden. Hierbei entspricht somit die Vorbelastung der in Kapitel 5.3 beschriebenen Gesamtbelastung.

5.3 Gesamtbelastung

Tabelle 5.3: Ergebnisse Gesamtbelastung

Immissionsberechnung Gesamtbelastung	Beurteilung nach TA Lärm (1998)				
		Beurteilungszeitraum Nacht (22h-6h)			
Immissionsorte	Adresse	IRW	$L_{r,90,VB}$		
		/dB(A)	/dB(A)		
IO-01	Erlenweg 4, Jardelund	45	47 [46,72]		
IO-02	Erlenweg 5, Böxlund	45	45 [44,61]		
IO-03	Grenzauweg 3, Böxlund	45	46 [46,31]		
10-04	Grenzstraße 1, Böxlund	45	45 [44,95]		
10-05	Weesbydamm 14, Weesby	45	46 [46,33]		
10-06	Kjerweg 4, Weesby	45	46 [45,75]		
10-07	Kjerweg 3, Weesby	45	46 [45,75]		
IO-08	Kjerweg 1, Weesby	45	46 [45,91]		
IO-09	Bögelhuus 2, Weesby	45	44 [44,33]		
IO-10	Bögelhuus 2a, Weesby	45	44 [44,34]		
IO-11	Bögelhuus 4, Weesby	45	46 [45,61]		

Wie in Kapitel 5.2 beschrieben entspricht für die Immissionsorte IO-01 und IO-02 die Vorbelastung der Gesamtbelastung. Bei Betrachtung der ganzzahlig angegebenen Beurteilungspegel werden die maßgebenden Immissionsrichtwerte am Immissionsort IO-01 um mehr als 1 dB(A) überschritten. An den Immissionsorten IO-03, IO-05 bis IO-08 und IO-11 wird der maßgebende Immissionsrichtwert um nicht mehr als 1 dB(A) überschritten.

An allen übrigen Immissionsorten werden die maßgebenden Immissionsrichtwerte im betrachteten Beurteilungszeitraum Nacht eingehalten bzw. unterschritten.

6 Abweichung zu den Richtlinien

Die Ermittlung der Beurteilungspegel erfolgte ohne Abweichungen zu den Richtlinien.

7 Zusammenfassung

Für die durch die BWP BB Wind GmbH & Co.KG geplanten Windenergieanlagen am Standort Böxlund wurde eine Ermittlung der Geräuschimmissionen durch Prognose nach /1/ in Verbindung mit /9/ unter Berücksichtigung von /11/ durchgeführt.

Die Festlegung der Randbedingungen erfolgte durch eine Standortbesichtigung am 06.06.2023 sowie in Abstimmung mit dem Auftraggeber und den zuständigen Behörden.

Die in den Berechnungen verwendeten Emissionsparameter der geplanten WEA ZB01 bis ZB03 beruhen auf Herstellerangaben der Dokumente /15/, /16/, /17/, /19/, und /20/.

Alle Emissionskenngrößen der geplanten WEA der Zusatzbelastung beziehen sich auf WEA mit aerodynamisch modifizierten Rotorblättern mit sägezahnförmigen Hinterkanten, sogenannte Trailing Edge Serrations (TES).

Die in den Berechnungen verwendeten Emissionsparameter der WEA der Vorbelastung beruhen auf Angaben der Genehmigungsbehörde.

Nach /11/ befinden sich die Immissionsorte IO-01 und IO-02 außerhalb des Einwirkungsbereichs der Zusatzbelastung.

Am Immissionsort IO-01 kommt es bei der Betrachtung der Gesamtbelastung im Beurteilungszeitraum Nacht zu einer Überschreitung der maßgebenden Immissionsrichtwerte von mehr als 1 dB allein durch die WEA der Vorbelastung. An den Immissionsorten IO-03, IO-05 bis IO-08 und IO-11 kommt es zu einer Überschreitung von 1 dB. An allen weiteren Immissionsorten werden die Immissionsrichtwerte eingehalten.

Für die zu genehmigenden WEA ergeben sich die in Tabelle 7.1 aufgeführten festzulegenden schalltechnischen Parameter.

Tabelle 7.1: festzulegende schalltechnische Parameter

								f / Hz				
WEA- Bez.	Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	8000	Σ
ZB01	Nacht	NR II s-1	$L_{WA,i}$ / dB(A)	86,5	93,4	96,3	98,1	100,1	99,2	90,6	68,9	105,2
ZB02	Nacht	NR VII s-1	$L_{WA,i}$ / dB(A)	83,2	88,3	91,8	93,6	97,2	97,7	85,4	63,8	102,1
ZB03	Nacht	101,0 dB	$L_{WA,i} / dB(A)$	84,3	89,0	90,2	93,4	95,7	96,3	85,4	71,1	101,0

Wird ggf. eine Abnahmemessung nach Inbetriebnahme zur Prüfung der Einhaltung der Immissionsrichtwerte bzw. die Einhaltung der Emissionsparameter als notwendig erachtet, wird mit Hinblick auf die Messmethode eine Prüfung der Emissionsdaten nach der FGW-Richtlinie TR1 in der aktuellen Revision 19 /6/ empfohlen.

Kommt es zu einer Überschreitung der Schallleistungspegel bzw. der weiteren schalltechnischen Parameter oder verändern sich die Koordinaten der Windenergieanlagen und Immissionsorte, ist in jedem Fall eine erneute Berechnung erforderlich. Diese Berechnung verliert in einem solchen Fall ihre Gültigkeit.

Hinweise zur Genauigkeit des verwendeten Rechenmodells sind /2/ zu entnehmen.

Belastungen durch hier nicht genannte Schallquellen werden in den Untersuchungen nicht berücksichtigt.

Die vorliegende Untersuchung wurde von der WIND-consult GmbH gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteiisch durchgeführt.

8 Literatur

- /1/ TECHNISCHE ANLEITUNG ZUM SCHUTZ GEGEN LÄRM TA LÄRM. IN: GEMEINSAMES MINISTERIALBLATT Nr. 26 (G 3191 A).
 6. ALLGEMEINE VERWALTUNGSVORSCHRIFT ZUM BUNDES-IMMISSIONSSCHUTZGESETZ VOM 26. AUGUST 1998. BONN (D): BUNDESMINISTERIUM DES INNEREN, 1998, ISSN-09394
- /2/ DEUTSCHES INSTITUT FÜR NORMUNG E.V. (DIN): DÄMPFUNG DES SCHALLS BEI DER AUSBREITUNG IM FREIEN: TEIL 2 ALLGEMEINES BERECHNUNGSVERFAHREN. SEPTEMBER 1999 DIN ISO 9613-2. BERLIN (D): BEUTH VERLAG GMBH, 1999
- /3/ BUNDESIMMISSIONSSCHUTZGESETZ IN DER AKTUELL GÜLTIGEN FASSUNG BIMSCHG
- /4/ VIERTE VERORDNUNG ZUR DURCHFÜHRUNG DES BUNDES-IMMISSIONSSCHUTZGESETZES (ART. 1 D. V ZUR NEUFASSUNG UND ÄNDERUNG VON VERORDNUNGEN ZUR DURCHFÜHRUNG DES BUNDES-IMMISSIONSSCHUTZGESETZES) VERORDNUNG ÜBER GENEHMIGLINGSREDÜRETIGE ANLAGEN 4. BIMSCHV
- /5/ Neunte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes Verordnung über das Genehmigungsverfahren - 9. BIMSchV
- /6/ FÖRDERGESELLSCHAFT FÜR WINDENERGIE E.V. (FGW) TECHNISCHE RICHTLINIEN FÜR WINDENERGIEANLAGEN. TEIL1: BESTIMMUNG DER SCHALLEMISSIONSWERTE. IN DER JEWEILS GÜLTIGEN REVISION. BERLIN (D)
- /7/ DEUTSCHES INSTITUT FÜR NORMUNG E.V. (DIN): ERMITTLUNG VON BEURTEILUNGSPEGEL AUS MESSUNGEN TEIL 1: GERÄUSCHIMMISSION IN DER NACHBARSCHAFT. DIN 45645-1, BERLIN (D): BEUTH-VERLAG GMBH, 1996-07
- /8/ DEUTSCHES INSTITUT FÜR NORMUNG E.V. (DIN): BESTIMMUNG DER TONHALTIGKEIT VON GERÄUSCHEN UND ERMITTLUNG EINES TONZUSCHLAGES FÜR DIE BEURTEILUNG VON GERÄUSCHIMMISSIONEN. DIN 45681:2005-03, BERLIN (D): BEUTH-VERLAG GMBH, 2005-03
- /9/ LÄNDERAUSSCHUSS FÜR IMMISSIONSSCHUTZ: HINWEIS ZUM SCHALLIMMISSIONSSCHUTZ BEI WINDKRAFTANLAGEN (WKA). ÜBERARBEITETER ENTWURF VOM 17.03.2016 MIT ÄNDERUNGEN PHYSE VOM 23.06.2016, STAND 30.06.2016.
- /10/ DOKUMENTATION ZUR SCHALLAUSBREITUNG : INTERIMSVERFAHREN ZUR PROGNOSE DER GERÄUSCHIMMISSIONEN VON WINDKRAFTANLAGEN: FASSUNG 2015-05.01
- /11/ SCHLESWIG-HOLSTEIN MINISTERIUM FÜR ENERGIEWENDE, LANDWIRTSCHAFT, UMWELT, NATUR UND DIGITALISIERUNG: EINFÜHRUNG DER AKTUELLEN LAI —HINWEISE ZUM SCHALLIMMISSIONSSCHUTZ BEI WINDKRAFTANLAGEN IN SCHLESWIG-HOLSTEIN, 31.01.2018
- /12/ DEUTSCHES INSTITUT FÜR NORMUNG E.V. (DIN): MESSUNG UND BEWERTUNG TIEFFREQUENTER GERÄUSCHIMMISSIONEN IN DER NACHBARSCHAFT. BEIBLATT ZU DIN 45680. BERLIN (D): BEUTH VERLAG GMBH, 1997
- /13/ DEUTSCHES INSTITUT FÜR NORMUNG E.V. (DIN): DIN 1333: ZAHLENANGABEN. 1992-02. BERLIN (D): BEUTH-VERLAG GMBH, 1992
- /14/ WIND-CONSULT GMBH (WICO): QMP 11: Berechnung der Schallimmission. QM-Prüfanweisung unveröffentlicht. Bargeshagen (D), akt. Fassung
- /15/ ENERCON GMBH: Technisches Datenblatt Oktavbandpegel Betriebsmodus 0 s-1 ENERCON Windenergieanlage E-160 EP5 E3 R1 / 5560 kW, D02693759/4.0-de, 18.10.2024
- /16/ ENERCON GMBH: Technisches Datenblatt Oktavbandpegel Betriebsmodus NR II s-1 ENERCON Windenergieanlage E-160 EP5 E3 R1 / 5560 kW, D02952679/2.0-de, 18.10.2024
- /17/ ENERCON GMBH: TECHNISCHES DATENBLATT OKTAVBANDPEGEL BETRIEBSMODUS NR VII s-1 ENERCON WINDENERGIEANLAGE E-160 EP5 E3 R1 / 5560 kW, D02952686/2.0-DE, 18.10.2024
- /18/ LANDESAMT FÜR LANDWIRTSCHAFT, UMWELT UND LÄNDLICHE RÄUME DES LANDES SCHLESWIG-HOLSTEIN (LLUR): KONZEPT ZUM UMGANG MIT ALT-WKA BEI DER BEURTEILUNG DER SCHALLIMMISSION DURCH DAS INTERIMSVERFAHREN (ÜBERWACHUNGSKONZEPT ALT-WKA), STAND 25.05.2018
- /19/ ENERCON GMBH: TECHNISCHES DATENBLATT OKTAVBANDPEGEL BETRIEBSMODUS 0 S ENERCON WINDENERGIEANLAGE E-138 EP3 E3 / 4260 kW mit TES (Trailing Edge Serrations), D1018700/5.1-De, 25.09.2024
- /20/ ENERCON GMBH: Technisches Datenblatt Oktavbandpegel Betriebsmodus 101,0 dB ENERCON Windenergieanlage E-138 EP3 E3 / 4260 kW mit TES (Trailing Edge Serrations), D02650487/4.0-de, 29.11.2024

9 Verzeichnis der verwendeten Formelzeichen und Abkürzungen

Bezeichnung	Symbol	Einheit
Bodendämpfung	A_gr	dB
Bewuchsdämpfungsmaß	A_{fol}	dB
Bebauungsdämpfungsmaß	A _{house}	dB
Abschirmung	A _{bar}	dB
Luftabsorptionsmaß	A _{atm}	dB
Abstandsmaß	A _{div}	dB
Richtwirkungskorrektur	D _C	dB
Richtwirkungsmaß	D _I	dB
Raumwinkelmaß	D _o	dB
Bodenreflexion	D_{Ω}	dB
Rotordurchmesser	d_R	m
relative Luftfeuchte	F	%
Tonfrequenz	f _T	Hz
Aufpunkthöhe ü.G.	h _A	m
Aufpunkthöhe ü.NN	hi	m
mittlere Höhe ü.G.	h _m	m
Nabenhöhe ü.G.	h _N	m
Höhe der Geräuschquelle ü.G.	h _Q	m
Immissionsort	10	-
Impulszuschlag nach DIN 45645	K_{l}	dB
mpulszuschlag n. DIN 45645 ("N" f. Nahbereich)	K _{IN}	dB
Fonzuschlag nach DIN 45681	K_{T}	dB
Tonzuschlag nach DIN 45681("N" für Nahbereich)	K_{TN}	dB
Vertrauensbereich	ΔL	dB(A)
Beurteilungspegel am Immissionsort	L _r	dB(A)
Obere Vertrauensbereichsgrenze für eine statistische Wahrscheinlichkeit von 90 %	L _{r90}	dB(A)
Teilbeurteilungspegel der i'ten Schallquelle	L _{r,i}	dB(A)
Gesamtschalldruckpegel am Immissionsort	Ls	dB(A)
Schalldruckpegel der i'ten Schallquelle	L _{s,i}	dB(A)
Schallleistungspegel	L _{WA}	dB(A)
Maximal zulässiger Emissionspegel	L _{e, max}	dB(A)
Schallleistungspegel, flächenbezogen	L _W "	dB(A)
Meteorologische Korrektur	C _{met}	dB
Faktor zur Wetterstatistik	C_o	dB

Bezeichnung	Symbol	Einheit
Rotordrehzahl	n _R	min ⁻¹
Wirkleistung	Р	kW
Wirkleistung, Referenz	P _{ref.}	kW
projizierter Abstand Quelle-Aufpunkt (Abstand in [m] Anhang 11.10)	S	m
Länge des Schallwegs durch Bewuchs	s_D	m
Länge des Schallwegs durch Bebauung	s_G	m
Abstand Schallquellenmitte-Aufpunkt	S _m	m
Sicherheitszuschlag	S	dB
Gesamtmessunsicherheit	U_G	dB(A)
Unsicherheit der Typvermessung	σ_{R}	[dB]
Unsicherheit der Serienstreuung	σ_{P}	[dB]
Unsicherheit des Prognosemodells	σ_{Prog}	[dB]
Lufttemperatur	Т	°C
Windenergieanlage	WEA	-
Rechtswert	х	m
Hochwert	У	m
Höhenwert	Z	m

10 Anhänge

10.1 Parameter der Emissionsquellen

Tabelle 10.1: Übersicht der Parameter der Emissionsquellen

Bez.	Тур	х	Υ	Z,rel	Beurteilungs- zeitraum	Betriebsweise	L _w	L _{WA,90}
		/ m	/ m	/ m	zemaam		/ dB(A)	/ dB(A)
VB01	ENERCON E-101	32508505	6079136	99	Tag	Standard	103,7	105,1
					Nacht	Standard	103,7	105,1
VB02	ENERCON E-101	32508551	6078885	99	Tag	Standard	104,2	105,6
					Nacht	Standard	104,2	105,6
VB03	Senvion 3.2M114	32509612	6078330	93	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB04	Senvion 3.2M114	32509812	6077810	93	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB05	Senvion 3.2M114	32510806	6079514	93	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB06	Senvion 3.2M114	32511144	6079614	93	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB07	Senvion 3.2M114	32511858	6079246	93	Tag	Standard	105,2	106,6
					Nacht	Reduziert	102,9	104,3
VB08	Senvion 3.2M114	32512196	6079176	93	Tag	Standard	103,2	104,6
					Nacht	Standard	103,2	104,6
VB09	Senvion 3.2M114	32509924	6080069	93	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB10	Senvion 3.2M114	32510243	6079899	93	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB11	Senvion 3.2M114	32510596	6079808	93	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB12	Senvion 3.2M114	32512631	6079003	123	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB13	Senvion 3.2M114	32512736	6078683	123	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB14	Senvion 3.2M114	32512978	6078401	123	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB15	Senvion 3.2M114	32513084	6078045	123	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB16	Senvion MM92	32513153	6078872	100	Tag	Standard	104,2	105,6
					Nacht	Standard	104,2	105,6
VB17	Senvion 3.2M114	32513375	6077826	123	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6

Bez.	Тур	Х	Y	Z _{,rel}	Beurteilungs- zeitraum	Betriebsweise	L _w	L _{WA,90}
		/ m	/ m	/ m			/ dB(A)	/ dB(A)
VB18	Vestas V112-3.0 MW	32513481	6078361	119	Tag	Standard	106,5	107,9
					Nacht	Standard	106,5	107,9
VB19	Senvion 3.2M114	32513587	6078671	123	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB20	Senvion 3.2M114	32513796	6078158	123	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB21	Senvion 3.2M114	32513934	6077779	123	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
VB22	Vestas V112-3.0 MW	32513971	6078453	119	Tag	Standard	106,5	107,9
					Nacht	Standard	106,5	107,9
VB23	Senvion 3.6 M114	32514185	6078032	119	Tag	Standard	105,2	106,6
					Nacht	Reduziert	102,3	103,7
VB24	Senvion 3.2M114	32514333	6078361	123	Tag	Standard	105,2	106,6
					Nacht	Standard	105,2	106,6
ZB01	ENERCON E-160	32509965	6079600	120	Tag	0 s-1	106,8	108,2
	EP5 E3 R1 / 5560 kW				Nacht	NR II s-1	105,2	106,6
ZB02	ENERCON E-160	32510417	6079349	120	Tag	0 s-1	106,8	108,2
	EP5 E3 R1 / 5560 kW				Nacht	NR VII s-1	102,1	103,5
ZB03	ENERCON E-138	32511520	6079549	111	Tag	0 s	106,0	107,4
	EP3 E3 / 4260 kW mit TES				Nacht	101,0 dB	101,0	102,4

Tabelle 10.2: Oktavschallleistungspegel der Vorbelastung VB01

WEA-Typ: ENERCON E-101												
(Angabe der Behörde) f / Hz												
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ		
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	86,3	93,6	97,1	98,7	97,3	94,2	74,3	103,7		
		L _{WA,90} / dB(A)	87,7	95,0	98,5	100,1	98,7	95,6	75,7	105,1		

Tabelle 10.3: Oktavschallleistungspegel der Vorbelastung VB02

WEA-Typ: ENER	CON E-101										
(Angabe der Bel	(Angabe der Behörde) f / Hz										
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ	
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	86,7	93,4	96,7	98,9	98,3	95,4	88,8	104,2	
		L _{WA,90} / dB(A)	88,1	94,8	98,1	100,3	99,7	96,8	90,2	105,6	

Tabelle 10.4: Oktavschallleistungspegel der Vorbelastung VB03

WEA-Typ: Senvi	ion 3.2M114										
(Referenzspektrum) f / Hz											
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ	
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2	
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6	

Tabelle 10.5: Oktavschallleistungspegel der Vorbelastung VB04

WEA-Typ: Senvi	on 3.2M114									
(Referenzspektrum) f / Hz										
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.6: Oktavschallleistungspegel der Vorbelastung VB05

WEA-Typ: Senvi	ion 3.2M114										
(Referenzspektrum) f / Hz											
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ	
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2	
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6	

Tabelle 10.7: Oktavschallleistungspegel der Vorbelastung VB06

WEA-Typ: Senvion 3.2M114												
(Referenzspektrum) f / Hz												
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ		
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2		
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6		

Tabelle 10.8: Oktavschallleistungspegel der Vorbelastung VB07

WEA-Typ: Senvion 3.2M114											
(Referenzspekt	rum)						f/H	z			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ	
Tag	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2	
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6	
Nacht	Reduziert	$L_{W,i}$ / dB(A)	82,6	91,0	95,2	97,4	96,9	94,9	90,9	102,9	
		L _{WA,90} / dB(A)	84,0	92,4	96,6	98,8	98,3	96,3	92,3	104,3	

Tabelle 10.9: Oktavschallleistungspegel der Vorbelastung VB08

WEA-Typ: Senvi	ion 3.2M114										
(Referenzspektrum) f / Hz											
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ	
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	82,9	91,3	95,5	97,7	97,2	95,2	91,2	103,2	
		L _{WA,90} / dB(A)	84,3	92,7	96,9	99,1	98,6	96,6	92,6	104,6	

Tabelle 10.10: Oktavschallleistungspegel der Vorbelastung VB09

WEA-Typ: Senvi	ion 3.2M114										
(Referenzspektrum) f / Hz											
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ	
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2	
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6	

Tabelle 10.11: Oktavschallleistungspegel der Vorbelastung VB10

WEA-Typ: Senvi	ion 3.2M114									
(Referenzspekti	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.12: Oktavschallleistungspegel der Vorbelastung VB11

WEA-Typ: Senvi	on 3.2M114									
(Referenzspektr	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.13: Oktavschallleistungspegel der Vorbelastung VB12

WEA-Typ: Senvi	ion 3.2M114									
(Referenzspekti	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.14: Oktavschallleistungspegel der Vorbelastung VB13

WEA-Typ: Senvi	on 3.2M114									
(Referenzspekti	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.15: Oktavschallleistungspegel der Vorbelastung VB14

WEA-Typ: Senvi	ion 3.2M114									
(Referenzspekti	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.16: Oktavschallleistungspegel der Vorbelastung VB15

WEA-Typ: Senvi	on 3.2M114									
(Referenzspektr	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.17: Oktavschallleistungspegel der Vorbelastung VB16

WEA-Typ: Senvi	on MM92									
(Referenzspektr	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	83,9	92,3	96,5	98,7	98,2	96,2	92,2	104,2
		L _{WA,90} / dB(A)	85,3	93,7	97,9	100,1	99,6	97,6	93,6	105,6

Tabelle 10.18: Oktavschallleistungspegel der Vorbelastung VB17

WEA-Typ: Senv	ion 3.2M114									
(Referenzspekt	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.19: Oktavschallleistungspegel der Vorbelastung VB18

WEA-Typ: Vesta	s V112-3.0 M	ıw								
(Referenzspekti	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	86,2	94,6	98,8	101,0	100,5	98,5	94,5	106,5
		L _{WA,90} / dB(A)	87,6	96,0	100,2	102,4	101,9	99,9	95,9	107,9

Tabelle 10.20: Oktavschallleistungspegel der Vorbelastung VB19

WEA-Typ: Senvi	on 3.2M114									
(Referenzspekti	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.21: Oktavschallleistungspegel der Vorbelastung VB20

WEA-Typ: Senvi	ion 3.2M114									
(Referenzspekti	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.22: Oktavschallleistungspegel der Vorbelastung VB21

WEA-Typ: Senvi	on 3.2M114									
(Referenzspektr	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.23: Oktavschallleistungspegel der Vorbelastung VB22

WEA-Typ: Vesta	s V112-3.0 M	ıw								
(Referenzspekti	rum)						f / Hz			
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	86,2	94,6	98,8	101,0	100,5	98,5	94,5	106,5
		L _{WA,90} / dB(A)	87,6	96,0	100,2	102,4	101,9	99,9	95,9	107,9

Tabelle 10.24: Oktavschallleistungspegel der Vorbelastung VB23

WEA-Typ: Senvion 3.6M114											
(Referenzspekt	rum)			f / Hz							
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ	
Tag	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2	
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6	
Nacht	Reduziert	$L_{W,i}$ / dB(A)	82,0	90,4	94,6	96,8	96,3	94,3	90,3	102,3	
		L _{WA,90} / dB(A)	83,4	91,8	96,0	98,2	97,7	95,7	91,7	103,7	

Tabelle 10.25: Oktavschallleistungspegel der Vorbelastung VB24

WEA-Typ: Senvi	on 3.2M114									
(Referenzspekti		f / Hz								
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	Σ
Tag/Nacht	Standard	$L_{W,i}$ / dB(A)	84,9	93,3	97,5	99,7	99,2	97,2	93,2	105,2
		L _{WA,90} / dB(A)	86,3	94,7	98,9	101,1	100,6	98,6	94,6	106,6

Tabelle 10.26: Oktavschallleistungspegel der Zusatzbelastung ZB01

WEA-Typ: ENERCON E-160 EP5 E3 R1 / 5560 kW											
Herstellerangab	en /15/, /16/					f / Hz					
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	8000	Σ
Tag	0 s-1	$L_{W,i}$ / dB(A)	88,0	97,1	98,1	99,8	101,4	100,2	92,9	70,7	106,8
		L _{WA,90} / dB(A)	89,4	98,5	99,5	101,2	102,8	101,6	94,3	72,1	108,2
Nacht	NR II s-1	L _{W,i} / dB(A)	86,5	93,4	96,3	98,1	100,1	99,2	90,6	68,9	105,2
		L _{WA,90} / dB(A)	87,9	94,8	97,7	99,5	101,5	100,6	92,0	70,3	106,6

Tabelle 10.27: Oktavschallleistungspegel der Zusatzbelastung ZB02

WEA-Typ: ENER	WEA-Typ: ENERCON E-160 EP5 E3 R1 / 5560 kW										
Herstellerangab	en /15/, /17/					f / Hz					
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	8000	Σ
Tag	0 s-1	$L_{W,i}$ / dB(A)	88,0	97,1	98,1	99,8	101,4	100,2	92,9	70,7	106,8
		L _{WA,90} / dB(A)	89,4	98,5	99,5	101,2	102,8	101,6	94,3	72,1	108,2
Nacht	NR VII s-1	$L_{W,i}$ / dB(A)	83,2	88,3	91,8	93,6	97,2	97,7	85,4	63,8	102,1
		L _{WA,90} / dB(A)	84,6	89,7	93,2	95,0	98,6	99,1	86,8	65,2	103,5

Tabelle 10.28: Oktavschallleistungspegel der Zusatzbelastung ZB03

WEA-Typ: ENER	WEA-Typ: ENERCON E-138 EP3 E3 / 4260 kW mit TES										
Herstellerangab	en /19/, /20/						f / Hz				
Beurteilungs- zeitraum	Betriebs- weise	Emissions- parameter	63	125	250	500	1000	2000	4000	8000	Σ
Tag	0 s	L _{W,i} / dB(A)	87,4	93,1	96,4	99,7	101,9	98,3	90,0	73,0	106,0
		L _{WA,90} / dB(A)	88,8	94,5	97,8	101,1	103,3	99,7	91,4	74,4	107,4
Nacht	101,0 dB	L _{w,i} / dB(A)	84,3	89,0	90,2	93,4	95,7	96,3	85,4	71,1	101,0
		L _{WA,90} / dB(A)	85,7	90,4	91,6	94,8	97,1	97,7	86,8	72,5	102,4

10.2 Parameter der Immissionsorte

Tabelle 10.29: Übersicht der Parameter der Immissionsorte

Bez.	Adresse	Х / m	Y / m	Z _{,rel} / m	Einstufung nach baulicher Nutzung	Immissions Tag / dB(A)	richtwert Nacht / dB(A)
10-01	Erlenweg 4, Jardelund	32512084	6078670	5	Kern-/Dorf-/Mischgebiet	60	45
10-02	Erlenweg 5, Böxlund	32511990	6078515	5	Kern-/Dorf-/Mischgebiet	60	45
10-03	Grenzauweg 3, Böxlund	32511291	6079064	5	Kern-/Dorf-/Mischgebiet	60	45
10-04	Grenzstraße 1, Böxlund	32510984	6078916	5	Kern-/Dorf-/Mischgebiet	60	45
10-05	Weesbydamm 14, Weesby	32510226	6078926	5	Kern-/Dorf-/Mischgebiet	60	45
10-06	Kjerweg 4, Weesby	32510018	6078918	5	Kern-/Dorf-/Mischgebiet	60	45
10-07	Kjerweg 3, Weesby	32509917	6078949	5	Kern-/Dorf-/Mischgebiet	60	45
10-08	Kjerweg 1, Weesby	32509890	6078996	5	Kern-/Dorf-/Mischgebiet	60	45
10-09	Bögelhuus 2, Weesby	32509362	6079254	5	Kern-/Dorf-/Mischgebiet	60	45
IO-10	Bögelhuus 2a, Weesby	32509354	6079278	5	Kern-/Dorf-/Mischgebiet	60	45
10-11	Bögelhuus 4, Weesby	32509431	6079917	5	Kern-/Dorf-/Mischgebiet	60	45

10.3 ENERCON E-160 EP5 E3 R1 / 5560 kW Modus 0 s-1

Technisches Datenblatt

Oktavbandpegel Betriebsmodus 0 s-1 ENERCON Windenergieanlage E-160 EP5 E3 R1 / 5560 kW

2024-10-29 14:42

Herausgeber ENERCON Global GmbH • Dreekamp 5 • 26605 Aurich • Deutschland

Telefon: +49 4941 927-0 • Telefax: +49 4941 927-109 E-Mail: info@enercon.de • Internet: http://www.enercon.de Geschäftsführer: Uwe Eberhardt, Ulrich Schulze Südhoff

Zuständiges Amtsgericht: Aurich • Handelsregisternummer: HRB 202549

Ust.ld.-Nr.: DE285537483

Urheberrechtshinweis

Die Inhalte dieses Dokuments sind urheberrechtlich sowie hinsichtlich der sonstigen geistigen Eigentumsrechte durch nationale und internationale Gesetze und Verträge geschützt. Die Rechte an den Inhalten dieses Dokuments liegen bei der ENERCON Global GmbH, sofern und soweit nicht ausdrücklich ein anderer Inhaber angegeben oder offensichtlich erkennbar ist.

Die ENERCON Global GmbH räumt dem Verwender das Recht ein, zu Informationszwecken für den eigenen, rein unternehmensinternen Gebrauch Kopien und Abschriften dieses Dokuments zu erstellen; weitergehende Nutzungsrechte werden dem Verwender durch die Bereitstellung dieses Dokuments nicht eingeräumt. Jegliche sonstige Vervielfältigung, Veränderung, Verbreitung, Veröffentlichung, Weitergabe, Überlassung an Dritte und/oder Verwertung der Inhalte dieses Dokuments ist – auch auszugsweise – ohne vorherige, ausdrückliche und schriftliche Zustimmung der ENERCON Global GmbH untersagt, sofern und soweit nicht zwingende gesetzliche Vorschriften ein Solches gestatten.

Dem Verwender ist es untersagt, für das in diesem Dokument wiedergegebene Know-how oder Teile davon gewerbliche Schutzrechte gleich welcher Art anzumelden.

Sofern und soweit die Rechte an den Inhalten dieses Dokuments nicht bei der ENERCON Global GmbH liegen, hat der Verwender die Nutzungsbestimmungen des jeweiligen Rechteinhabers zu beachten.

Geschützte Marken

Alle in diesem Dokument ggf. genannten Marken- und Warenzeichen sind geistiges Eigentum der jeweiligen eingetragenen Inhaber; die Bestimmungen des anwendbaren Kennzeichen- und Markenrechts gelten uneingeschränkt.

Änderungsvorbehalt

Die ENERCON Global GmbH behält sich vor, dieses Dokument und den darin beschriebenen Gegenstand jederzeit ohne Vorankündigung zu ändern, insbesondere zu verbessern und zu erweitern, sofern und soweit vertragliche Vereinbarungen oder gesetzliche Vorgaben dem nicht entgegenstehen.

Dokumentinformation

Dokument-ID D02	2693759/4.0-de
Vermerk Orig	ginaldokument

Datum	Sprache	DCC	Werk / Abteilung
2024-10-18	de	DA	WRD Wobben Research and Development GmbH / Documentation Department

2 von 8 D02693759/4.0-de / DA

Mitgeltende Dokumente

Der aufgeführte Dokumenttitel ist der Titel des Sprachoriginals, ggf. ergänzt um eine Übersetzung dieses Titels in Klammern. Die Titel von übergeordneten Normen und Richtlinien werden im Sprachoriginal oder in der englischen Übersetzung angegeben. Die Dokument-ID bezeichnet stets das Sprachoriginal. Enthält die Dokument-ID keinen Revisionsstand, gilt der jeweils neueste Revisionsstand des Dokuments. Diese Liste enthält ggf. Dokumente zu optionalen Komponenten.

Übergeordnete Normen und Richtlinien

15	Dokument-ID	Dokument
	ISO 266:1997	Acoustic – Preferred frequencies

Zugehörige Dokumente

Dokument-ID	Dokument
diverse	Datenblatt Betriebsmodus

Freigabe: 2024-10-29 14:42

D02693759/4.0-de / DA

Inhaltsverzeichnis

1	Verfügbarkeit Betriebsmodus	6
2	Allgemeines	7
3	Informationen zu Oktavbandpegeln	7
4	Oktaybandpegel des lautesten Zustands	8

Freigabe: 2024-10-29 14:42

4 von 8 D02693759/4.0-de / DA

Abkürzungsverzeichnis

Abkürzungen

EIO Ersatzimmissionsort
HST Hybrid-Stahlturm
HT Hybridturm
IO Immissionsort
NH Nabenhöhe
ST Stahlturm

Größen, Einheiten, Formeln

 $egin{array}{ll} {f L}_{\tt O} & {\sf Oktavbandpegel} \\ {f L}_{\tt T} & {\sf Terzbandpegel} \end{array}$

ν_H Windgeschwindigkeit in Nabenhöhe

Freigabe: 2024-10-29 14:42

D02693759/4.0-de / DA

1 Verfügbarkeit Betriebsmodus

In der nachfolgenden Tabelle ist ersichtlich, für welche Turmvarianten bzw. Nabenhöhen der Betriebsmodus verfügbar ist.

Tab. 1: Verfügbarkeit Betriebsmodus

Be- triebs- mo- dus	Turmvariante und Nabenhöhe							
	E-160 EP5		E-160 EP5 E3- HST-140-FB- C-01	E-160 EP5 E3- HT-160-ES- C-01	E-160 EP5 E3-HT-166- ES-C-01			
	NH 99 m	NH 120 m	NH 140 m	NH 160 m	NH 166 m			
0 s-1	x	x	х	x	х			

x = verfügbar

Freigabe: 2024-10-29 14:42

6 von 8 D02693759/4.0-de / DA

2 Allgemeines

Dieses Dokument beinhaltet Zusatzinformationen zum Datenblatt Betriebsmodus. Im Übrigen gelten die im Datenblatt Betriebsmodus aufgeführten Regelungen hinsichtlich der technischen Eigenschaften der Windenergieanlage.

3 Informationen zu Oktavbandpegeln

Für Oktavbandpegel bis zur Oktavbandmittenfrequenz von 2000 Hz gelten die Angaben zur Unsicherheit gemäß Datenblatt Betriebsmodus. Für Frequenzen größer 2000 Hz nehmen aufgrund physikalischer Effekte die Unsicherheiten zu. Diese Frequenzen haben keinen Einfluss auf den Immissionsort (IO) oder auf den Ersatzimmissionsort (EIO) und sind grundsätzlich vernachlässigbar. Bei verschiedenen Messungen an bestehenden ENERCON Windenergieanlagen verschiedener Typen gemäß den anwendbaren Richtlinien ergaben sich Unsicherheiten für die Oktavbandpegel im Frequenzbereich 4000 Hz bei ±2,5 dB(A) und im Frequenzbereich 8000 Hz bei ±8,0 dB(A). Angesichts der begrenzten Untersuchungen kann eine Reproduzierbarkeit dieser Messungen für alle ENERCON Windenergieanlagen bei gleichen Unsicherheiten nicht garantiert werden.

Die Zuordnung der Oktavbandpegel zur Windgeschwindigkeit in Nabenhöhe (ν_H) gilt für alle Nabenhöhen (NH). Die Windgeschwindigkeit wird bei Messungen aus der Leistungsabgabe und der Leistungskennlinie bestimmt. Die nachfolgend angegebenen Oktavbandpegel wurden auf Basis von aeroakustischen Simulationen ermittelt. Die einzelnen Oktavbandpegel werte können nicht garantiert werden. Der Summenpegel aller Oktavbandpegel pro Windgeschwindigkeit entspricht dem Schallleistungspegel bei dieser Windgeschwindigkeit, welcher im zugrundeliegenden Datenblatt für die jeweiligen Betriebsmodi angegeben ist. Daher ist der Summenpegel im Rahmen des im Datenblatt festgelegten Geltungsbereichs und auf Basis der anwendbaren Normen und Richtlinien einzuhalten.

Die angegebenen Oktavbandpegel des lautesten Zustands wurden aus den simulierten Terzbandpegelwerten gemäß den Frequenzbändern der ISO 266:1997 im Bereich von 25 Hz bis 10000 Hz erzeugt. Ein Oktavbandpegel $L_{\rm O}$ wird aus 3 Terzbandpegeln $L_{\rm T1},\,L_{\rm T2}$ und $L_{\rm T3}$ gemäß folgender Formel berechnet:

$$L_{o} = 10 \times \log \left(10^{\frac{L_{T1}}{10}} + 10^{\frac{L_{T2}}{10}} + 10^{\frac{L_{T3}}{10}} \right)$$

Freigabe: 2024-10-29 14:42

D02693759/4.0-de / DA

4 Oktavbandpegel des lautesten Zustands

Folgende Oktavbandpegelwerte gelten unter Berücksichtigung der im Datenblatt Betriebsmodus aufgeführten Unsicherheiten.

Tab. 2: Oktavbandpegel in dB(A), bezogen auf Windgeschwindigkeit in Nabenhöhe $v_{\scriptscriptstyle H}$

V _H in m/s	Oktavbandmittenfrequenz in Hz							
	63	125	250	500	1000	2000	4000	8000
12	88,0	97,1	98,1	99,8	101,4	100,2	92,9	70,7

Freigabe: 2024-10-29 14:42

8 von 8 D02693759/4.0-de / DA

10.4 ENERCON E-160 EP5 E3 R1 / 5560 kW Mode NR II s-1

Technisches Datenblatt

Oktavbandpegel Betriebsmodus NR II s-1 ENERCON Windenergieanlage E-160 EP5 E3 R1 / 5560 kW

2024-10-29 14:42

ENERCON Global GmbH - Dreekamp 5 - 26605 Aurich - Deutschland Herausgeber

Telefon: +49 4941 927-0 • Telefax: +49 4941 927-109 E-Mail: info@enercon.de = Internet: http://www.enercon.de Geschäftsführer: Uwe Eberhardt, Ulrich Schulze Südhoff

Zuständiges Amtsgericht: Aurich • Handelsregisternummer: HRB 202549

Ust.ld.-Nr.: DE285537483

Urheberrechtshinweis

Die Inhalte dieses Dokuments sind urheberrechtlich sowie hinsichtlich der sonstigen geistigen Eigentumsrechte durch nationale und internationale Gesetze und Verträge geschützt. Die Rechte an den Inhalten dieses Dokuments liegen bei der ENERCON Global GmbH, sofern und soweit nicht ausdrücklich ein anderer Inhaber angegeben oder offensichtlich erkennbar ist.

Die ENERCON Global GmbH räumt dem Verwender das Recht ein, zu Informationszwecken für den eigenen, rein unternehmensinternen Gebrauch Kopien und Abschriften dieses Dokuments zu erstellen; weitergehende Nutzungsrechte werden dem Verwender durch die Bereitstellung dieses Dokuments nicht eingeräumt. Jegliche sonstige Vervielfältigung, Veränderung, Verbreitung, Veröffentlichung, Weitergabe, Überlassung an Dritte und/oder Verwertung der Inhalte dieses Dokuments ist - auch auszugsweise - ohne vorherige, ausdrückliche und schriftliche Zustimmung der ENERCON Global GmbH untersagt, sofern und soweit nicht zwingende gesetzliche Vorschriften ein Solches gestatten.

Dem Verwender ist es untersagt, für das in diesem Dokument wiedergegebene Know-how oder Teile davon gewerbliche Schutzrechte gleich welcher Art anzumel-

Sofern und soweit die Rechte an den Inhalten dieses Dokuments nicht bei der ENERCON Global GmbH liegen, hat der Verwender die Nutzungsbestimmungen des jeweiligen Rechteinhabers zu beachten.

Geschützte Marken

Alle in diesem Dokument ggf. genannten Marken- und Warenzeichen sind geistiges Eigentum der jeweiligen eingetragenen Inhaber; die Bestimmungen des anwendba-

ren Kennzeichen- und Markenrechts gelten uneingeschränkt.

Änderungsvorbehalt

Die ENERCON Global GmbH behält sich vor, dieses Dokument und den darin beschriebenen Gegenstand jederzeit ohne Vorankündigung zu ändern, insbesondere zu verbessern und zu erweitern, sofern und soweit vertragliche Vereinbarungen oder gesetzliche Vorgaben dem nicht entgegenstehen.

Dokumentinformation

Dokument-ID	D02952679/2.0-de
Vermerk	Originaldokument

Datum	Sprache	DCC	Werk / Abteilung
2024-10-18	de	DA	WRD Wobben Research and Development GmbH / Documentation Department

2 von 8 D02952679/2.0-de / DA

Technisches Datenblatt NR II s-1 – E-160 EP5 E3 R1 / 5560 kW

Mitgeltende Dokumente

Der aufgeführte Dokumenttitel ist der Titel des Sprachoriginals, ggf. ergänzt um eine Übersetzung dieses Titels in Klammern. Die Titel von übergeordneten Normen und Richtlinien werden im Sprachoriginal oder in der englischen Übersetzung angegeben. Die Dokument-ID bezeichnet stets das Sprachoriginal. Enthält die Dokument-ID keinen Revisionsstand, gilt der jeweils neueste Revisionsstand des Dokuments. Diese Liste enthält ggf. Dokumente zu optionalen Komponenten.

Übergeordnete Normen und Richtlinien

Dokument-ID	Dokument
ISO 266:1997	Acoustic – Preferred frequencies

Zugehörige Dokumente

Dokument-ID	Dokument
diverse	Datenblatt Betriebsmodus

Freigabe: 2024-10-29 14:42

D02952679/2.0-de / DA

Technisches Datenblatt Oktavbandpegel Betriebsmodus NR II s-1 − E-160 EP5 E3 R1 / 5560 kW ENERGIE FÜR DIE WELT

Inhaltsverzeichnis

1	Verfügbarkeit Betriebsmodus	6
2	Allgemeines	7
3	Informationen zu Oktavbandpegeln	7
4	Oktavbandpegel des lautesten Zustands	8

Freigabe: 2024-10-29 14:42

D02952679/2.0-de / DA 4 von 8

Technisches Datenblatt

ENERGIE FÜR DIE WELT

Oktavbandpegel Betriebsmodus NR II s-1 – E-160 EP5 E3 R1 / 5560 kW

Abkürzungsverzeichnis

Abkürzungen

EIO Ersatzimmissionsort **HST** Hybrid-Stahlturm HT Hybridturm 10 Immissionsort NH Nabenhöhe ST Stahlturm

Größen, Einheiten, Formeln

 \mathbf{L}_{o} Oktavbandpegel Terzbandpegel

Windgeschwindigkeit in Nabenhöhe V_H

Freigabe: 2024-10-29 14:42

D02952679/2.0-de / DA

Technisches Datenblatt
Oktavbandpegel Betriebsmodus NR II s-1 − E-160 EP5 E3 R1 / 5560 kW
■ ENERGIE FÜR DIE WELT

1 Verfügbarkeit Betriebsmodus

In der nachfolgenden Tabelle ist ersichtlich, für welche Turmvarianten bzw. Nabenhöhen der Betriebsmodus verfügbar ist.

Tab. 1: Verfügbarkeit Betriebsmodus

Be-	Turmvariante und Nabenhöhe							
triebs- modus	E-160 EP5 E3-ST-99-FB- C-01/02	E-160 EP5 E3-HST-120- FB-C-01	E-160 EP5 E3- HST-140-FB- C-01	E-160 EP5 E3- HT-160-ES- C-01	E-160 EP5 E3- HT-166-ES- C-01			
	NH 99 m	NH 120 m	NH 140 m	NH 160 m	NH 166 m			
NR II s-	х	x	х	х	х			

x = verfügbar

Freigabe: 2024-10-29 14:42

6 von 8 D02952679/2.0-de / DA

Technisches Datenblatt ENERGIE EIR DIE WELT Oktavbandpegel Betriebsmodus NR II s-1 – E-160 EP5 E3 R1 / 5560 kW

2 **Allgemeines**

Dieses Dokument beinhaltet Zusatzinformationen zum Datenblatt Betriebsmodus. Im Übrigen gelten die im Datenblatt Betriebsmodus aufgeführten Regelungen hinsichtlich der technischen Eigenschaften der Windenergieanlage.

3 Informationen zu Oktavbandpegeln

Für Oktavbandpegel bis zur Oktavbandmittenfrequenz von 2000 Hz gelten die Angaben zur Unsicherheit gemäß Datenblatt Betriebsmodus. Für Frequenzen größer 2000 Hz nehmen aufgrund physikalischer Effekte die Unsicherheiten zu. Diese Frequenzen haben keinen Einfluss auf den Immissionsort (IO) oder auf den Ersatzimmissionsort (EIO) und sind grundsätzlich vernachlässigbar. Bei verschiedenen Messungen an bestehenden ENERCON Windenergieanlagen verschiedener Typen gemäß den anwendbaren Richtlinien ergaben sich Unsicherheiten für die Oktavbandpegel im Frequenzbereich 4000 Hz bei ±2,5 dB(A) und im Frequenzbereich 8000 Hz bei ±8,0 dB(A). Angesichts der begrenzten Untersuchungen kann eine Reproduzierbarkeit dieser Messungen für alle ENERCON Windenergieanlagen bei gleichen Unsicherheiten nicht garantiert werden.

Die Zuordnung der Oktavbandpegel zur Windgeschwindigkeit in Nabenhöhe (vH) gilt für alle Nabenhöhen (NH). Die Windgeschwindigkeit wird bei Messungen aus der Leistungsabgabe und der Leistungskennlinie bestimmt. Die nachfolgend angegebenen Oktavbandpegel wurden auf Basis von aeroakustischen Simulationen ermittelt. Die einzelnen Oktavbandpegelwerte können nicht garantiert werden. Der Summenpegel aller Oktavbandpegel pro Windgeschwindigkeit entspricht dem Schallleistungspegel bei dieser Windgeschwindigkeit, welcher im zugrundeliegenden Datenblatt für die jeweiligen Betriebsmodi angegeben ist. Daher ist der Summenpegel im Rahmen des im Datenblatt festgelegten Geltungsbereichs und auf Basis der anwendbaren Normen und Richtlinien einzuhalten.

Die angegebenen Oktavbandpegel des lautesten Zustands wurden aus den simulierten Terzbandpegelwerten gemäß den Frequenzbändern der ISO 266:1997 im Bereich von 25 Hz bis 10000 Hz erzeugt. Ein Oktavbandpegel L_0 wird aus 3 Terzbandpegeln L_{T1} , L_{T2} und L_{T3} gemäß folgender Formel berechnet:

$$L_{o} = 10 \times \log \left(10^{\frac{L_{T1}}{10}} + 10^{\frac{L_{T2}}{10}} + 10^{\frac{L_{T3}}{10}} \right)$$

-reigabe: 2024-10-29 14:42

D02952679/2.0-de / DA

Technisches Datenblatt Oktavbandpegel Betriebsmodus NR II s-1 – E-160 EP5 E3 R1 / 5560 kW ENERGIE FÜR DIE WELT

4 Oktavbandpegel des lautesten Zustands

Folgende Oktavbandpegelwerte gelten unter Berücksichtigung der im Datenblatt Betriebsmodus aufgeführten Unsicherheiten.

Tab. 2: Oktavbandpegel in dB(A), bezogen auf Windgeschwindigkeit in Nabenhöhe $v_{\scriptscriptstyle H}$

v _H in m/s	Oktavbandmittenfrequenz in Hz							
	63	125	250	500	1000	2000	4000	8000
12	86,5	93,4	96,3	98,1	100,1	99,2	90,6	68,9

Freigabe: 2024-10-29 14:42

8 von 8 D02952679/2.0-de / DA

10.5 ENERCON E-160 EP5 E3 R1 / 5560 kW Mode NR VII s-1

Technisches Datenblatt

Oktavbandpegel Betriebsmodus NR VII s-1 ENERCON Windenergieanlage E-160 EP5 E3 R1 / 5560 kW

2024-10-29 14:42

Herausgeber ENERCON Global GmbH • Dreekamp 5 • 26605 Aurich • Deutschland

Telefon: +49 4941 927-0 • Telefax: +49 4941 927-109
E-Mail: info@enercon.de • Internet: http://www.enercon.de
Geschäftsführer: Uwe Eberhardt, Ulrich Schulze Südhoff

Zuständiges Amtsgericht: Aurich • Handelsregisternummer: HRB 202549

Ust.ld.-Nr.: DE285537483

Urheberrechtshinweis

Die Inhalte dieses Dokuments sind urheberrechtlich sowie hinsichtlich der sonstigen geistigen Eigentumsrechte durch nationale und internationale Gesetze und Verträge geschützt. Die Rechte an den Inhalten dieses Dokuments liegen bei der ENERCON Global GmbH, sofern und soweit nicht ausdrücklich ein anderer Inhaber angegeben oder offensichtlich erkennbar ist.

Die ENERCON Global GmbH räumt dem Verwender das Recht ein, zu Informationszwecken für den eigenen, rein unternehmensinternen Gebrauch Kopien und Abschriften dieses Dokuments zu erstellen; weitergehende Nutzungsrechte werden dem Verwender durch die Bereitstellung dieses Dokuments nicht eingeräumt. Jegliche sonstige Vervielfältigung, Veränderung, Verbreitung, Veröffentlichung, Weitergabe, Überlassung an Dritte und/oder Verwertung der Inhalte dieses Dokuments ist – auch auszugsweise – ohne vorherige, ausdrückliche und schriftliche Zustimmung der ENERCON Global GmbH untersagt, sofern und soweit nicht zwingende gesetzliche Vorschriften ein Solches gestatten.

Dem Verwender ist es untersagt, für das in diesem Dokument wiedergegebene Know-how oder Teile davon gewerbliche Schutzrechte gleich welcher Art anzumelden.

Sofern und soweit die Rechte an den Inhalten dieses Dokuments nicht bei der ENERCON Global GmbH liegen, hat der Verwender die Nutzungsbestimmungen des jeweiligen Rechteinhabers zu beachten.

Geschützte Marken

Alle in diesem Dokument ggf. genannten Marken- und Warenzeichen sind geistiges Eigentum der jeweiligen eingetragenen Inhaber; die Bestimmungen des anwendbaren Kennzeichen- und Markenrechts gelten uneingeschränkt.

Änderungsvorbehalt

Die ENERCON Global GmbH behält sich vor, dieses Dokument und den darin beschriebenen Gegenstand jederzeit ohne Vorankündigung zu ändern, insbesondere zu verbessern und zu erweitern, sofern und soweit vertragliche Vereinbarungen oder gesetzliche Vorgaben dem nicht entgegenstehen.

Dokumentinformation

Dokument-ID	D02952686/2.0-de
Vermerk	Originaldokument

Datum	Sprache	DCC	CC Werk / Abteilung	
2024-10-18	de	DA	WRD Wobben Research and Development GmbH / Documentation Department	

D02952686/2.0-de / DA

Mitgeltende Dokumente

Der aufgeführte Dokumenttitel ist der Titel des Sprachoriginals, ggf. ergänzt um eine Übersetzung dieses Titels in Klammern. Die Titel von übergeordneten Normen und Richtlinien werden im Sprachoriginal oder in der englischen Übersetzung angegeben. Die Dokument-ID bezeichnet stets das Sprachoriginal. Enthält die Dokument-ID keinen Revisionsstand, gilt der jeweils neueste Revisionsstand des Dokuments. Diese Liste enthält ggf. Dokumente zu optionalen Komponenten.

Übergeordnete Normen und Richtlinien

Dokument-ID	Dokument
ISO 266:1997	Acoustic – Preferred frequencies

Zugehörige Dokumente

Dokument-ID	Dokument
diverse	Datenblatt Betriebsmodus

Freigabe: 2024-10-29 14:42

D02952686/2.0-de / DA

Inhaltsverzeichnis

1	Verfügbarkeit Betriebsmodus	6
2	Allgemeines	7
3	Informationen zu Oktavbandpegeln	7
4	Oktavbandpegel des lautesten Zustands	8

Freigabe: 2024-10-29 14:42

4 von 8 D02952686/2.0-de / DA

Abkürzungsverzeichnis

Abkürzungen

EIO Ersatzimmissionsort
HST Hybrid-Stahlturm
HT Hybridturm
IO Immissionsort
NH Nabenhöhe
ST Stahlturm

Größen, Einheiten, Formeln

 $egin{array}{ll} {\bf L}_{\sf o} & {\sf Oktavbandpegel} \\ {f L}_{\sf T} & {\sf Terzbandpegel} \end{array}$

ν_H Windgeschwindigkeit in Nabenhöhe

Freigabe: 2024-10-29 14:42

D02952686/2.0-de / DA

1 Verfügbarkeit Betriebsmodus

In der nachfolgenden Tabelle ist ersichtlich, für welche Turmvarianten bzw. Nabenhöhen der Betriebsmodus verfügbar ist.

Tab. 1: Verfügbarkeit Betriebsmodus

modus	Turmvariante und Nabenhöhe							
	E-160 EP5 E3-ST-99- FB-C-01/02	E-160 EP5 E3-HST-120- FB-C-01	E-160 EP5 E3-HST-140- FB-C-01	E-160 EP5 E3-HT-160- ES-C-01	E-160 EP5 E3- HT-166-ES- C-01			
	NH 99 m	NH 120 m	NH 140 m	NH 160 m	NH 166 m			
NR VII s-1	x	×	x	x	X			

x = verfügbar

Freigabe: 2024-10-29 14:42

6 von 8 D02952686/2.0-de / DA

2 Allgemeines

Dieses Dokument beinhaltet Zusatzinformationen zum Datenblatt Betriebsmodus. Im Übrigen gelten die im Datenblatt Betriebsmodus aufgeführten Regelungen hinsichtlich der technischen Eigenschaften der Windenergieanlage.

3 Informationen zu Oktavbandpegeln

Für Oktavbandpegel bis zur Oktavbandmittenfrequenz von 2000 Hz gelten die Angaben zur Unsicherheit gemäß Datenblatt Betriebsmodus. Für Frequenzen größer 2000 Hz nehmen aufgrund physikalischer Effekte die Unsicherheiten zu. Diese Frequenzen haben keinen Einfluss auf den Immissionsort (IO) oder auf den Ersatzimmissionsort (EIO) und sind grundsätzlich vernachlässigbar. Bei verschiedenen Messungen an bestehenden ENERCON Windenergieanlagen verschiedener Typen gemäß den anwendbaren Richtlinien ergaben sich Unsicherheiten für die Oktavbandpegel im Frequenzbereich 4000 Hz bei ±2,5 dB(A) und im Frequenzbereich 8000 Hz bei ±8,0 dB(A). Angesichts der begrenzten Untersuchungen kann eine Reproduzierbarkeit dieser Messungen für alle ENERCON Windenergieanlagen bei gleichen Unsicherheiten nicht garantiert werden.

Die Zuordnung der Oktavbandpegel zur Windgeschwindigkeit in Nabenhöhe (ν_H) gilt für alle Nabenhöhen (NH). Die Windgeschwindigkeit wird bei Messungen aus der Leistungsabgabe und der Leistungskennlinie bestimmt. Die nachfolgend angegebenen Oktavbandpegel wurden auf Basis von aeroakustischen Simulationen ermittelt. Die einzelnen Oktavbandpegel werte können nicht garantiert werden. Der Summenpegel aller Oktavbandpegel pro Windgeschwindigkeit entspricht dem Schallleistungspegel bei dieser Windgeschwindigkeit, welcher im zugrundeliegenden Datenblatt für die jeweiligen Betriebsmodi angegeben ist. Daher ist der Summenpegel im Rahmen des im Datenblatt festgelegten Geltungsbereichs und auf Basis der anwendbaren Normen und Richtlinien einzuhalten.

Die angegebenen Oktavbandpegel des lautesten Zustands wurden aus den simulierten Terzbandpegelwerten gemäß den Frequenzbändern der ISO 266:1997 im Bereich von 25 Hz bis 10000 Hz erzeugt. Ein Oktavbandpegel $L_{\rm O}$ wird aus 3 Terzbandpegeln $L_{\rm T1},\,L_{\rm T2}$ und $L_{\rm T3}$ gemäß folgender Formel berechnet:

$$L_{o} = 10 \times \log \left(10^{\frac{L_{T1}}{10}} + 10^{\frac{L_{T2}}{10}} + 10^{\frac{L_{T3}}{10}} \right)$$

Freigabe: 2024-10-29 14:42

D02952686/2.0-de / DA

4 Oktavbandpegel des lautesten Zustands

Folgende Oktavbandpegelwerte gelten unter Berücksichtigung der im Datenblatt Betriebsmodus aufgeführten Unsicherheiten.

Tab. 2: Oktavbandpegel in dB(A), bezogen auf Windgeschwindigkeit in Nabenhöhe $v_{\scriptscriptstyle H}$

V _H in m/s	Oktavl	Oktavbandmittenfrequenz in Hz								
	63	125	250	500	1000	2000	4000	8000		
12	83,2	88,3	91,8	93,6	97,2	97,7	85,4	63,8		

Freigabe: 2024-10-29 14:42

8 von 8 D02952686/2.0-de / DA

10.6 ENERCON E-138 EP3 E3 / 4260 kW mit TES Mode 0 s

Technisches Datenblatt

Oktavbandpegel Betriebsmodus 0 s ENERCON Windenergieanlage E-138 EP3 E3 / 4260 kW mit TES (Trailing Edge Serrations)

: 2024-09-27 12:32

Technisches Datenblatt Oktavbandpegel Betriebsmodus 0 s – E-138 EP3 E3 / 4260 kW mit TES

Herausgeber ENERCON Global GmbH • Dreekamp 5 • 26605 Aurich • Deutschland

Telefon: +49 4941 927-0 • Telefax: +49 4941 927-109
E-Mail: info@enercon.de • Internet: http://www.enercon.de
Geschäftsführer: Uwe Eberhardt, Ulrich Schulze Südhoff

Zuständiges Amtsgericht: Aurich • Handelsregisternummer: HRB 202549

Ust.ld.-Nr.: DE285537483

Urheberrechtshinweis

Die Inhalte dieses Dokuments sind urheberrechtlich sowie hinsichtlich der sonstigen geistigen Eigentumsrechte durch nationale und internationale Gesetze und Verträge geschützt. Die Rechte an den Inhalten dieses Dokuments liegen bei der ENERCON Global GmbH, sofern und soweit nicht ausdrücklich ein anderer Inhaber angegeben oder offensichtlich erkennbar ist.

Die ENERCON Global GmbH räumt dem Verwender das Recht ein, zu Informationszwecken für den eigenen, rein unternehmensinternen Gebrauch Kopien und Abschriften dieses Dokuments zu erstellen; weitergehende Nutzungsrechte werden dem Verwender durch die Bereitstellung dieses Dokuments nicht eingeräumt. Jegliche sonstige Vervielfältigung, Veränderung, Verbreitung, Veröffentlichung, Weitergabe, Überlassung an Dritte und/oder Verwertung der Inhalte dieses Dokuments ist – auch auszugsweise – ohne vorherige, ausdrückliche und schriftliche Zustimmung der ENERCON Global GmbH untersagt, sofern und soweit nicht zwingende gesetzliche Vorschriften ein Solches gestatten.

Dem Verwender ist es untersagt, für das in diesem Dokument wiedergegebene Know-how oder Teile davon gewerbliche Schutzrechte gleich welcher Art anzumelden.

Sofern und soweit die Rechte an den Inhalten dieses Dokuments nicht bei der ENERCON Global GmbH liegen, hat der Verwender die Nutzungsbestimmungen des jeweiligen Rechteinhabers zu beachten.

Geschützte Marken

Alle in diesem Dokument ggf. genannten Marken- und Warenzeichen sind geistiges Eigentum der jeweiligen eingetragenen Inhaber; die Bestimmungen des anwendbaren Kennzeichen- und Markenrechts gelten uneingeschränkt.

Änderungsvorbehalt

Die ENERCON Global GmbH behält sich vor, dieses Dokument und den darin beschriebenen Gegenstand jederzeit ohne Vorankündigung zu ändern, insbesondere zu verbessern und zu erweitern, sofern und soweit vertragliche Vereinbarungen oder gesetzliche Vorgaben dem nicht entgegenstehen.

Dokumentinformation

Dokument-ID	D1018700/5.1-de	
Vermerk	Originaldokument	

Datum	Sprache	DCC	Werk / Abteilung
2024-09-25	de	DA	WRD Wobben Research and Development GmbH / Documentation Department

2 von 8 D1018700/5.1-de / DA

ENERCON ENERGIE FÜR DIE WELT

Technisches Datenblatt Oktavbandpegel Betriebsmodus 0 s – E-138 EP3 E3 / 4260 kW mit TES

Mitgeltende Dokumente

Der aufgeführte Dokumenttitel ist der Titel des Sprachoriginals, ggf. ergänzt um eine Übersetzung dieses Titels in Klammern. Die Titel von übergeordneten Normen und Richtlinien werden im Sprachoriginal oder in der englischen Übersetzung angegeben. Die Dokument-ID bezeichnet stets das Sprachoriginal. Enthält die Dokument-ID keinen Revisionsstand, gilt der jeweils neueste Revisionsstand des Dokuments. Diese Liste enthält ggf. Dokumente zu optionalen Komponenten.

Übergeordnete Normen und Richtlinien

Dokument-ID	Dokument
ISO 266:1997	Acoustic – Preferred frequencies

Zugehörige Dokumente

Dokument-ID	Dokument
diverse	Datenblatt Betriebsmodi

Freigabe: 2024-09-27 12:32

D1018700/5.1-de / DA

Technisches Datenblatt Technisches Datenblatt Oktavbandpegel Betriebsmodus 0 s − E-138 EP3 E3 / 4260 kW mit ENERGIE FÜR DIE WELT

Inhaltsverzeichnis

1	Verfügbarer Betriebsmodus	6
2	Allgemeines	7
3	Informationen zu Oktavbandpegeln	7
4	Oktavbandpegel des lautesten Zustands	8
	4.4 Patriothermodes 0.5	•

Freigabe: 2024-09-27 12:32

4 von 8 D1018700/5.1-de / DA

Technisches Datenblatt Oktavbandpegel Betriebsmodus 0 s – E-138 EP3 E3 / 4260 kW mit TES

Abkürzungsverzeichnis

Abkürzungen

EIO Ersatzimmissionsort
HST Hybrid-Stahlturm
HT Hybridturm
IO Immissionsort
NH Nabenhöhe
ST Stahlturm

Größen, Einheiten, Formeln

Lo OktavbandpegelLT Terzbandpegel

v_H Windgeschwindigkeit in Nabenhöhev_s Standardisierte Windgeschwindigkeit

Freigabe: 2024-09-27 12:32

D1018700/5.1-de / DA

Technisches Datenblatt Technisches Datenbiatt
Oktavbandpegel Betriebsmodus 0 s − E-138 EP3 E3 / 4260 kW mit
ENERCON **TES**

Verfügbarer Betriebsmodus 1

In der nachfolgenden Tabelle ist ersichtlich, welcher Betriebsmodus für welche Turmvarianten bzw. Nabenhöhen verfügbar ist.

Tab. 1: Verfügbarer Betriebsmodus

Betriebs-	Turmvariante und Nabenhöhe (NH)								
modus	E-138 EP3 E-138 EP3 E3-ST-81- E3-ST-99- FB-C-01 FB-C-01		E-138 EP3 E3-ST-111- FB-C-01 E3- HST-111- FB-C-01		B E-138 EP3 E-138 E E3- E3- HST-131- HT-160- FB-C-01 ES-C-01				
	NH 81 m	NH 99 m	NH 111 m	NH 111 m	NH 131 m	NH 160 m			
0 s	х	x	x	x	x	x			

x = verfügbar

- = nicht verfügbar

Freigabe: 2024-09-27 12:32

D1018700/5.1-de / DA 6 von 8

Technisches Datenblatt Oktavbandpegel Betriebsmodus 0 s – E-138 EP3 E3 / 4260 kW mit TES

2 Allgemeines

Dieses Dokument beinhaltet Zusatzinformationen zum Datenblatt Betriebsmodi. Im Übrigen gelten die im Datenblatt Betriebsmodi aufgeführten Regelungen hinsichtlich der technischen Eigenschaften der Windenergieanlage.

3 Informationen zu Oktavbandpegeln

Für Oktavbandpegel bis zur Oktavbandmittenfrequenz von 2000 Hz gelten die Angaben zur Unsicherheit gemäß Datenblatt Betriebsmodi. Für Frequenzen größer 2000 Hz nehmen aufgrund physikalischer Effekte die Unsicherheiten zu. Diese Frequenzen haben keinen Einfluss auf den Immissionsort (IO) oder auf den Ersatzimmissionsort (EIO) und sind grundsätzlich vernachlässigbar. Bei verschiedenen Messungen an bestehenden ENERCON Windenergieanlagen verschiedener Typen gemäß den anwendbaren Richtlinien ergaben sich Unsicherheiten für die Oktavbandpegel im Frequenzbereich 4000 Hz bei ±2,5 dB(A) und im Frequenzbereich 8000 Hz bei ±8,0 dB(A). Angesichts der begrenzten Untersuchungen kann eine Reproduzierbarkeit dieser Messungen für alle ENERCON Windenergieanlagen bei gleichen Unsicherheiten nicht garantiert werden.

Die Zuordnung der Oktavbandpegel zur standardisierten Windgeschwindigkeit v_s in 10 m Höhe gilt nur unter Voraussetzung eines logarithmischen Windprofils mit Rauigkeitslänge 0,05 m. Die Zuordnung der Oktavbandpegel zur Windgeschwindigkeit in Nabenhöhe (v_H) gilt für alle Nabenhöhen (NH). Die Windgeschwindigkeit wird bei Messungen aus der Leistungsabgabe und der Leistungskennlinie bestimmt. Die nachfolgend angegebenen Oktavbandpegel wurden auf Basis von aeroakustischen Simulationen ermittelt. Die einzelnen Oktavbandpegelwerte können nicht garantiert werden. Der Summenpegel aller Oktavbandpegel pro Windgeschwindigkeit entspricht dem Schallleistungspegel bei dieser Windgeschwindigkeit, welcher im zugrundeliegenden Datenblatt für die jeweiligen Betriebsmodi angegeben ist. Daher ist der Summenpegel im Rahmen des im Datenblatt festgelegten Geltungsbereichs und auf Basis der anwendbaren Normen und Richtlinien einzuhalten.

Die angegebenen Oktavbandpegel des lautesten Zustands wurden aus den simulierten Terzbandpegelwerten gemäß den Frequenzbändern der ISO 266:1997 im Bereich von 25 Hz bis 10000 Hz erzeugt. Ein Oktavbandpegel $L_{\rm O}$ wird aus 3 Terzbandpegeln $L_{\rm T1}$, $L_{\rm T2}$ und $L_{\rm T3}$ gemäß folgender Formel berechnet:

$$L_{o} = 10 \times \log \left(10^{\frac{L_{T1}}{10}} + 10^{\frac{L_{T2}}{10}} + 10^{\frac{L_{T3}}{10}} \right)$$

Freigabe: 2024-09-27 12:32

D1018700/5.1-de / DA

Technisches Datenblatt Technisches Datenblatt
Oktavbandpegel Betriebsmodus 0 s − E-138 EP3 E3 / 4260 kW mit
ENERCON **TES**

Oktavbandpegel des lautesten Zustands 4

4.1 Betriebsmodus 0 s

Folgende Oktavbandpegelwerte gelten unter Berücksichtigung der im Datenblatt Betriebsmodi aufgeführten Unsicherheiten.

Tab. 2: Oktavbandpegel in dB(A), bezogen auf Windgeschwindigkeit in Nabenhöhe v_H

V _H in m/s	Oktavbandmittenfrequenz in Hz									
	63	125	250	500	1000	2000	4000	8000		
11	87,4	93,1	96,4	99,7	101,9	98,3	90,0	73,0		

Freigabe: 2024-09-27 12:32

D1018700/5.1-de / DA 8 von 8

10.7 ENERCON E-138 EP3 E3 / 4260 kW mit TES Mode 101,0 dB

Technisches Datenblatt

Oktavbandpegel Betriebsmodus 101,0 dB ENERCON Windenergieanlage E-138 EP3 E3 / 4260 kW mit TES (Trailing Edge Serrations)

be: 2024-12-02 17:03

Technisches Datenblatt Oktavbandpegel Betriebsmodus 101,0 dB – E-138 EP3 E3 / 4260 kW mit TES

Herausgeber ENERCON Global GmbH • Dreekamp 5 • 26605 Aurich • Deutschland

Telefon: +49 4941 927-0 • Telefax: +49 4941 927-109 E-Mail: info@enercon.de • Internet: http://www.enercon.de Geschäftsführer: Uwe Eberhardt, Ulrich Schulze Südhoff

Zuständiges Amtsgericht: Aurich • Handelsregisternummer: HRB 202549

Ust.ld.-Nr.: DE285537483

Urheberrechtshinweis

Die Inhalte dieses Dokuments sind urheberrechtlich sowie hinsichtlich der sonstigen geistigen Eigentumsrechte durch nationale und internationale Gesetze und Verträge geschützt. Die Rechte an den Inhalten dieses Dokuments liegen bei der ENERCON Global GmbH, sofern und soweit nicht ausdrücklich ein anderer Inhaber angegeben oder offensichtlich erkennbar ist.

Die ENERCON Global GmbH räumt dem Verwender das Recht ein, zu Informationszwecken für den eigenen, rein unternehmensinternen Gebrauch Kopien und Abschriften dieses Dokuments zu erstellen; weitergehende Nutzungsrechte werden dem Verwender durch die Bereitstellung dieses Dokuments nicht eingeräumt. Jegliche sonstige Vervielfältigung, Veränderung, Verbreitung, Veröffentlichung, Weitergabe, Überlassung an Dritte und/oder Verwertung der Inhalte dieses Dokuments ist – auch auszugsweise – ohne vorherige, ausdrückliche und schriftliche Zustimmung der ENERCON Global GmbH untersagt, sofern und soweit nicht zwingende gesetzliche Vorschriften ein Solches gestatten.

Dem Verwender ist es untersagt, für das in diesem Dokument wiedergegebene Know-how oder Teile davon gewerbliche Schutzrechte gleich welcher Art anzumelden.

Sofern und soweit die Rechte an den Inhalten dieses Dokuments nicht bei der ENERCON Global GmbH liegen, hat der Verwender die Nutzungsbestimmungen des jeweiligen Rechteinhabers zu beachten.

Geschützte Marken

Alle in diesem Dokument ggf. genannten Marken- und Warenzeichen sind geistiges Eigentum der jeweiligen eingetragenen Inhaber; die Bestimmungen des anwendbaren Kennzeichen- und Markenrechts gelten uneingeschränkt.

Änderungsvorbehalt

Die ENERCON Global GmbH behält sich vor, dieses Dokument und den darin beschriebenen Gegenstand jederzeit ohne Vorankündigung zu ändern, insbesondere zu verbessern und zu erweitern, sofern und soweit vertragliche Vereinbarungen oder gesetzliche Vorgaben dem nicht entgegenstehen.

Dokumentinformation

Dokument-ID	D02650487/4.0-de
Vermerk	Originaldokument

Datum	Sprache DCC		latum Sprache DCC Werk / Abteilung			
2024-11-29	de	DA	WRD Wobben Research and Development GmbH / Documentation Department			

2 von 8 D02650487/4.0-de / DA

Technisches Datenblatt Oktavbandpegel Betriebsmodus 101,0 dB – E-138 EP3 E3 / 4260 kW mit TES

Mitgeltende Dokumente

Der aufgeführte Dokumenttitel ist der Titel des Sprachoriginals, ggf. ergänzt um eine Übersetzung dieses Titels in Klammern. Die Titel von übergeordneten Normen und Richtlinien werden im Sprachoriginal oder in der englischen Übersetzung angegeben. Die Dokument-ID bezeichnet stets das Sprachoriginal. Enthält die Dokument-ID keinen Revisionsstand, gilt der jeweils neueste Revisionsstand des Dokuments. Diese Liste enthält ggf. Dokumente zu optionalen Komponenten.

Übergeordnete Normen und Richtlinien

Dokument-ID	Dokument
ISO 266:1997	Acoustic – Preferred frequencies

Zugehörige Dokumente

Dokument-ID	Dokument
diverse	Datenblatt Betriebsmodi

Freigabe: 2024-12-02 17:03

D02650487/4.0-de / DA

Technisches Datenblatt

Technisches Datenblatt

Oktavbandpegel Betriebsmodus 101,0 dB – E-138 EP3 E3 / 4260 kW mit

ENERGIE FÜR DIE WELT

Inhaltsverzeichnis

1	Verfügbare Betriebsmodi	6
2	Allgemeines	7
3	Informationen zu Oktavbandpegeln	7
4	Oktavbandpegel des lautesten Zustands	8
	4.4 Patriahamadua 404.0 dB	

Freigabe: 2024-12-02 17:03

D02650487/4.0-de / DA 4 von 8

Technisches Datenblatt Oktavbandpegel Betriebsmodus 101,0 dB – E-138 EP3 E3 / 4260 kW mit TES

Abkürzungsverzeichnis

Abkürzungen

EIO Ersatzimmissionsort
HST Hybrid-Stahlturm
HT Hybridturm
IO Immissionsort
NH Nabenhöhe
ST Stahlturm

Größen, Einheiten, Formeln

 $egin{array}{ll} {\bf L}_{\sf o} & {\sf Oktavbandpegel} \\ {f L}_{\sf T} & {\sf Terzbandpegel} \end{array}$

v_H Windgeschwindigkeit in Nabenhöhev_s Standardisierte Windgeschwindigkeit

Freigabe: 2024-12-02 17:03

D02650487/4.0-de / DA

Technisches Datenblatt

Technisches Datenbiatt
Oktavbandpegel Betriebsmodus 101,0 dB – E-138 EP3 E3 / 4260 kW mit
ENERCON

Verfügbare Betriebsmodi 1

In der nachfolgenden Tabelle ist ersichtlich, welche Betriebsmodi für welche Turmvarianten bzw. Nabenhöhen verfügbar sind.

Tab. 1: Verfügbare Betriebsmodi

	Turmvariante und Nabenhöhe (NH)									
modus	E-138 EP3 E3-ST-81- FB-C-01 FB-C-01		E3-ST-111-		E-138 EP3 E3- HST-131- FB-C-01	E-138 EP3 E3-HT-160- ES-C-01				
	NH 81 m	NH 99 m	NH 111 m	NH 111 m	NH 131 m	NH 160 m				
101,0 dB	х	x	x	x	_	x				

x = verfügbar

- = nicht verfügbar

Freigabe: 2024-12-02 17:03

D02650487/4.0-de / DA 6 von 8

Technisches Datenblatt Oktavbandpegel Betriebsmodus 101,0 dB – E-138 EP3 E3 / 4260 kW mit TES

2 Allgemeines

Dieses Dokument beinhaltet Zusatzinformationen zum Datenblatt Betriebsmodi. Im Übrigen gelten die im Datenblatt Betriebsmodi aufgeführten Regelungen hinsichtlich der technischen Eigenschaften der Windenergieanlage.

3 Informationen zu Oktavbandpegeln

Für Oktavbandpegel bis zur Oktavbandmittenfrequenz von 2000 Hz gelten die Angaben zur Unsicherheit gemäß Datenblatt Betriebsmodi. Für Frequenzen größer 2000 Hz nehmen aufgrund physikalischer Effekte die Unsicherheiten zu. Diese Frequenzen haben keinen Einfluss auf den Immissionsort (IO) oder auf den Ersatzimmissionsort (EIO) und sind grundsätzlich vernachlässigbar. Bei verschiedenen Messungen an bestehenden ENERCON Windenergieanlagen verschiedener Typen gemäß den anwendbaren Richtlinien ergaben sich Unsicherheiten für die Oktavbandpegel im Frequenzbereich 4000 Hz bei ±2,5 dB(A) und im Frequenzbereich 8000 Hz bei ±8,0 dB(A). Angesichts der begrenzten Untersuchungen kann eine Reproduzierbarkeit dieser Messungen für alle ENERCON Windenergieanlagen bei gleichen Unsicherheiten nicht garantiert werden.

Die Zuordnung der Oktavbandpegel zur standardisierten Windgeschwindigkeit v_s in 10 m Höhe gilt nur unter Voraussetzung eines logarithmischen Windprofils mit Rauigkeitslänge 0,05 m. Die Zuordnung der Oktavbandpegel zur Windgeschwindigkeit in Nabenhöhe (v_H) gilt für alle Nabenhöhen (NH). Die Windgeschwindigkeit wird bei Messungen aus der Leistungsabgabe und der Leistungskennlinie bestimmt. Die nachfolgend angegebenen Oktavbandpegel wurden auf Basis von aeroakustischen Simulationen ermittelt. Die einzelnen Oktavbandpegelwerte können nicht garantiert werden. Der Summenpegel aller Oktavbandpegel pro Windgeschwindigkeit entspricht dem Schallleistungspegel bei dieser Windgeschwindigkeit, welcher im zugrundeliegenden Datenblatt für die jeweiligen Betriebsmodi angegeben ist. Daher ist der Summenpegel im Rahmen des im Datenblatt festgelegten Geltungsbereichs und auf Basis der anwendbaren Normen und Richtlinien einzuhalten.

Die angegebenen Oktavbandpegel des lautesten Zustands wurden aus den simulierten Terzbandpegelwerten gemäß den Frequenzbändern der ISO 266:1997 im Bereich von 25 Hz bis 10000 Hz erzeugt. Ein Oktavbandpegel $L_{\scriptscriptstyle O}$ wird aus 3 Terzbandpegeln $L_{\scriptscriptstyle T1},\,L_{\scriptscriptstyle T2}$ und $L_{\scriptscriptstyle T3}$ gemäß folgender Formel berechnet:

$$L_0 = 10 \times \log \left(10^{\frac{L_{T1}}{10}} + 10^{\frac{L_{T2}}{10}} + 10^{\frac{L_{T3}}{10}} \right)$$

Freigabe: 2024-12-02 17:03

D02650487/4.0-de / DA

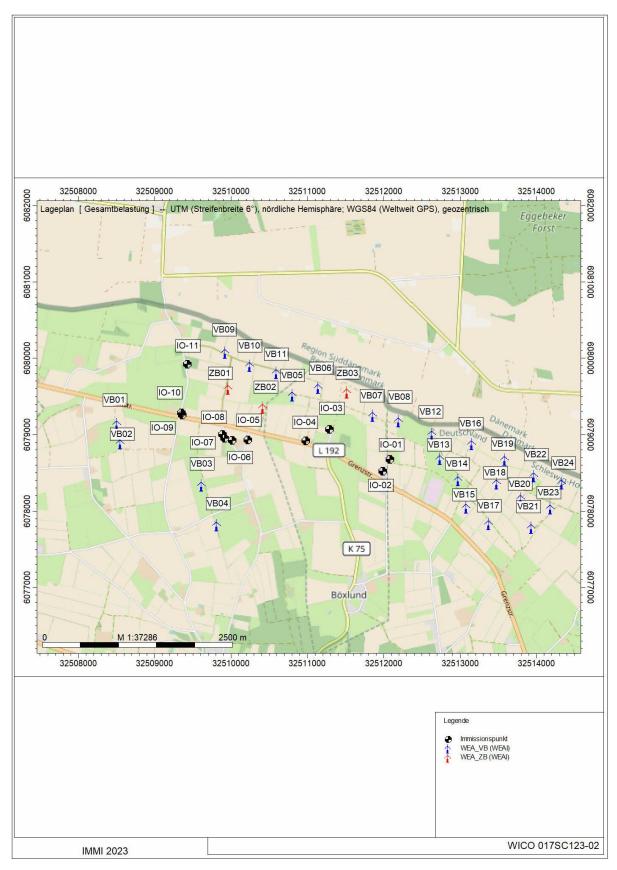
Technisches Datenblatt Technisches Datenbiatt
Oktavbandpegel Betriebsmodus 101,0 dB – E-138 EP3 E3 / 4260 kW mit
ENERCON

Oktavbandpegel des lautesten Zustands 4

4.1 Betriebsmodus 101,0 dB

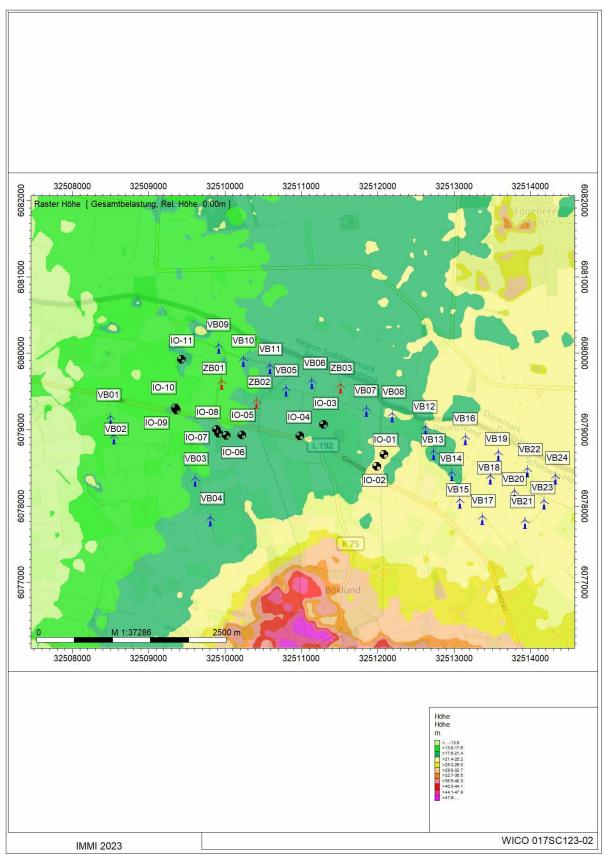
Folgende Oktavbandpegelwerte gelten unter Berücksichtigung der im Datenblatt Betriebsmodi aufgeführten Unsicherheiten.

Tab. 2: Oktavbandpegel in dB(A), bezogen auf Windgeschwindigkeit in Nabenhöhe v_H

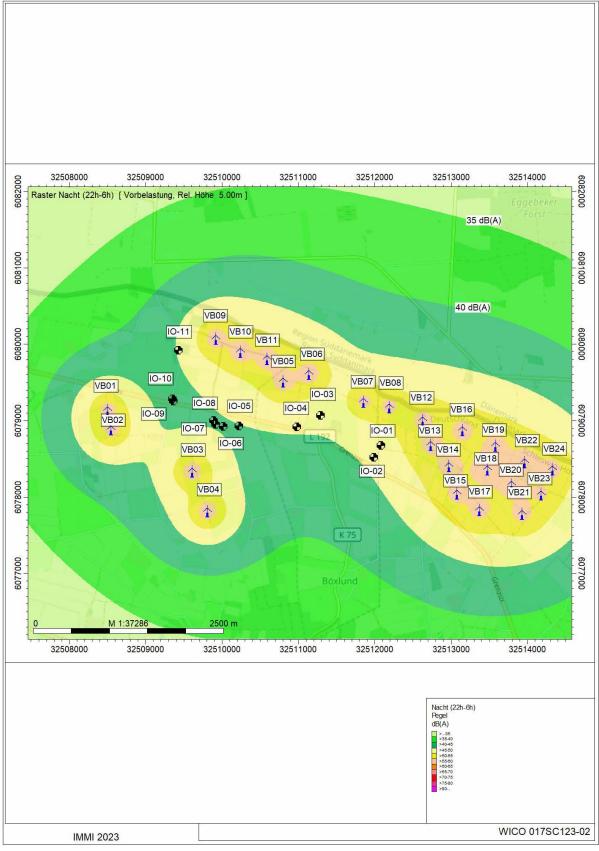

V _H in m/s	Oktavbandmittenfrequenz in Hz								
	63	125	250	500	1000	2000	4000	8000	
11,5	84,3	89,0	90,2	93,4	95,7	96,3	85,4	71,1	

Freigabe: 2024-12-02 17:03

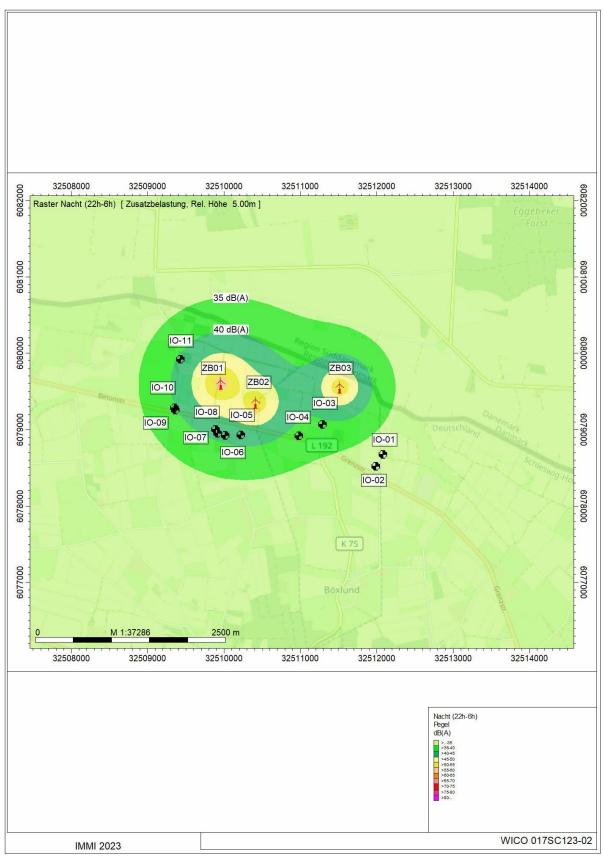
8 von 8 D02650487/4.0-de / DA



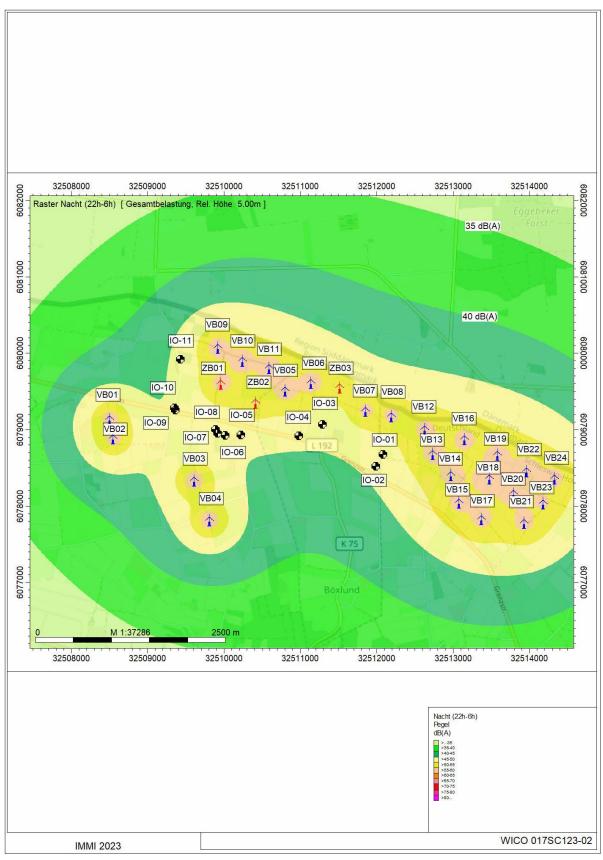
10.8 Lageplan – Rechenmodell



10.9 Digitales Höhenmodell



10.10 Rasterlärmkarte Vorbelastung - Beurteilungszeitraum Nacht



10.11 Rasterlärmkarte Zusatzbelastung - Beurteilungszeitraum Nacht

10.12 Rasterlärmkarte Gesamtbelastung - Beurteilungszeitraum Nacht

10.13 Verwendetes Rechenmodell in IMMI

Davashwu wasai natallu wa	Vania van Bafarana	
Berechnungseinstellung Rechenmodell	Kopie von Referenz	Dostovkovoskovos
Gleitende Anpassung des Erhebungsgebietes an die Lage d	Punktberechnung	Rasterberechnung
L/m	ies irki	
Geländekanten als Hindernisse	Nein	Nein
Verbesserte Interpolation in den Randbereichen	Ja	Ja
Freifeld vor Reflexionsflächen /m	Ja	Ja
für Quellen	1.0	1.0
	1.0	1.0
für Immissionspunkte Haus: weißer Rand bei Raster	Nein	Nein
	Keine	Keine
Zwischenausgaben	Keine	Keine
Art der Einstellung	Referenzeinstellung	Referenzeinstellung
Reichweite von Quellen begrenzen:		
* Suchradius /m (Abstand Quelle-IP) begrenzen:	Nein	Nein
* Mindest-Pegelabstand /dB:	Nein	Nein
Projektion von Linienquellen	Ja	Ja
Projektion von Flächenquellen	Ja	Ja
Beschränkung der Projektion	Nein	Nein
* Radius /m um Quelle herum:		
* Radius /m um IP herum:		
Mindestlänge für Teilstücke /m	1.0	1.0
Variable MinLänge für Teilstücke:		
* in Prozent des Abstandes IP-Quelle	Nein	Nein
Zus. Faktor für Abstandskriterium	1.0	1.0
Einfügungsdämpfung abweichend von Regelwerk:	Nein	Nein
* Einfügungsdämpfung begrenzen:		
* Grenzwert /dB für Einfachbeugung:		
* Grenzwert /dB für Mehrfachbeugung:		
Berechnung der Abschirmung bei VDI 2720, ISO9613		
* Seitlicher Umweg	Ja	Ja
* Seitlicher Umweg bei Spiegelquellen	Nein	Nein
Reflexion		
Reflexion (max. Ordnung)	1	1
Suchradius /m (Abstand Quelle-IP) begrenzen:	Nein	Nein
* Suchradius /m		
Reichweite von Refl.Flächen begrenzen:		
* Radius um Quelle oder IP /m:	Nein	Nein
* Mindest-Pegelabstand /dB:	Nein	Nein
Spiegelquellen durch Projektion	Ja	Ja
Keine Refl. bei vollständiger Abschirmung	Ja	Ja
Strahlen als Hilfslinien sichern	Nein	Nein
Teilstück-Kontrolle		
Teilstück-Kontrolle nach Schall 03:	Nein	Nein
Teilstück-Kontrolle auch für andere Regelwerke:	Nein	Nein
Beschleunigte Iteration (Näherung):	Nein	Nein
Geforderte Genauigkeit /dB:	0.1	0.1
Zwischenergebnisse anzeigen:	Nein	Nein

Globale Parameter		Kopie vo	n Referenz	
Voreinstellung von G außerhalb von DBOD-Elementen			0,00	
Temperatur /°			10	
relative Feuchte /%			70	
Wohnfläche pro Einw. /m² (=0.8*Brutto)			40,00	
Mittlere Stockwerkshöhe in m			2,80	
Pauschale Meteorologie (Directive 2002/49/EC):	Tag	Abend	Nacht	
Pauschale Meteorologie (Directive 2002/49/EC):	2,00	1,00	0,00	

Parameter der Bibliothek: ISO 9613	Kopie von Referenz	
Mit-Wind Wetterlage	Ja	
Vereinfachte Formel (Nr. 7.3.2) für Bodendämpfung bei		
frequenzabhängiger Berechnung	Nein	
frequenzunabhängiger Berechnung	Ja	
Berechnung der Mittleren Höhe Hm	streng nach ISO 9613-2	
nur Abstandsmaß berechnen(veraltet)	Nein	
Hindernisdämpfung - auch negative Bodendämpfung abziehen	Nein	
Abzug höchstens bis -Dz	Nein	
"Additional recommendations" - ISO TR 17534-3	Ja	
Berücksichtigt Bewuchs-Elemente	Ja	
Berücksichtigt Bebauungs-Elemente	Ja	
Berücksichtigt Boden-Elemente	Ja	

10.14 Einzelpunktberechnung – Gesamtbelastung Nacht (Summenpegel)

Gesamtbelastung - Beurteilungszeitraum Nacht als A-bewertete Summenpegel der spektralen Anteile (Die Immissionsberechnung – tabellarisch berücksichtigt die verwendeten Zuschläge.)

Lange Liste - Alle Teilquellen / A-Summenpegel gebildet

Immissionsberechnung	Beurteilung nach TA Lärm (1998)	
Gesamtbelastung	Einstellung: Kopie von Referenz	Nacht (22h-6h)

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt001	IO-01	32512084.0	6078670.0	27.8	46.7

ISO 9613-	2	LfT = Lw +	- Dc - A	div - Aatm	- Agr - A	Afol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	2316.6	78.3	5.9	-3.0	0.0	0.0	0.0	0.0	25.4
WEAI002	ZB02	103.5	0.0	1803.3	76.1	6.0	-3.0	0.0	0.0	0.0	0.0	24.3
WEAI004	ZB03	102.4	0.0	1049.5	71.4	3.9	-3.0	0.0	0.0	0.0	0.0	30.1
WEAI005	VB01	105.1	0.0	3610.2	82.2	301.9	-3.0	0.0	0.0	0.0	0.0	20.0
WEAI006	VB02	105.6	0.0	3540.6	82.0	293.6	-3.0	0.0	0.0	0.0	0.0	20.2
WEAI007	VB03	106.6	0.0	2496.7	78.9	166.6	-3.0	0.0	0.0	0.0	0.0	25.1
WEAI008	VB04	106.6	0.0	2430.8	78.7	158.6	-3.0	0.0	0.0	0.0	0.0	25.4
WEAI009	VB05	106.6	0.0	1533.8	74.7	48.3	-3.0	0.0	0.0	0.0	0.0	30.9
WEAI010	VB06	106.6	0.0	1334.9	73.5	23.5	-3.0	0.0	0.0	0.0	0.0	32.5
WEAI011	VB07	104.3	0.0	624.58	66.9	2.1	-3.0	0.0	0.0	0.0	0.0	38.3
WEAI012	VB08	104.6	0.0	525.49	65.4	1.8	-3.0	0.0	0.0	0.0	0.0	40.4
WEAI013	VB09	106.6	0.0	2574.8	79.2	176.1	-3.0	0.0	0.0	0.0	0.0	24.7
WEAI014	VB10	106.6	0.0	2215.1	77.9	132.3	-3.0	0.0	0.0	0.0	0.0	26.6
WEAI015	VB11	106.6	0.0	1875.1	76.5	90.5	-3.0	0.0	0.0	0.0	0.0	28.6
WEAI016	VB12	106.6	0.0	650.83	67.3	2.1	-3.0	0.0	0.0	0.0	0.0	40.2
WEAI017	VB13	106.6	0.0	662.22	67.4	2.2	-3.0	0.0	0.0	0.0	0.0	40.0
WEAI018	VB14	106.6	0.0	940.67	70.5	2.8	-3.0	0.0	0.0	0.0	0.0	36.3
WEAI019	VB15	106.6	0.0	1185.1	72.5	7.0	-3.0	0.0	0.0	0.0	0.0	33.8
WEAI020	VB16	105.6	0.0	1092.0	71.8	3.6	-3.0	0.0	0.0	0.0	0.0	33.7
WEAI021	VB17	106.6	0.0	1546.9	74.8	49.9	-3.0	0.0	0.0	0.0	0.0	30.8
WEAI022	VB18	107.9	0.0	1435.3	74.1	34.7	-3.0	0.0	0.0	0.0	0.0	33.0
WEAI023	VB19	106.6	0.0	1507.6	74.6	45.0	-3.0	0.0	0.0	0.0	0.0	31.1
WEAI024	VB20	106.6	0.0	1790.9	76.1	80.1	-3.0	0.0	0.0	0.0	0.0	29.1
WEAI025	VB21	106.6	0.0	2056.8	77.3	112.8	-3.0	0.0	0.0	0.0	0.0	27.5
WEAI026	VB22	107.9	0.0	1902.9	76.6	92.6	-3.0	0.0	0.0	0.0	0.0	29.7
WEAI027	VB23	103.7	0.0	2198.8	77.8	133.2	-3.0	0.0	0.0	0.0	0.0	23.7
WEAI028	VB24	106.6	0.0	2273.2	78.1	139.4	-3.0	0.0	0.0	0.0	0.0	26.2

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt002	IO-02	32511990.0	6078515.0	27.0	44.6

ISO 9613-	2	LfT = Lw +	Dc - A	div - Aatm	- Agr - A	fol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	2299.9	78.2	5.9	-3.0	0.0	0.0	0.0	0.0	25.5
WEAI002	ZB02	103.5	0.0	1783.9	76.0	6.0	-3.0	0.0	0.0	0.0	0.0	24.5
WEAI004	ZB03	102.4	0.0	1140.6	72.1	4.2	-3.0	0.0	0.0	0.0	0.0	29,1
WEAI005	VB01	105.1	0.0	3540.9	82.0	293.6	-3.0	0.0	0.0	0.0	0.0	20.2
WEAI006	VB02	105.6	0.0	3459.9	81.8	283.8	-3.0	0.0	0.0	0.0	0.0	20.5
WEAI007	VB03	106.6	0.0	2386.7	78.6	153.2	-3.0	0.0	0.0	0.0	0.0	25.6
WEAI008	VB04	106.6	0.0	2290.8	78.2	141.5	-3.0	0.0	0.0	0.0	0.0	26.1
WEAI009	VB05	106.6	0.0	1551.4	74.8	50.5	-3.0	0.0	0.0	0.0	0.0	30.8
WEAI010	VB06	106.6	0.0	1389.5	73.9	30.3	-3.0	0.0	0.0	0.0	0.0	32.0
WEAI011	VB07	104.3	0.0	747.78	68.5	2.4	-3.0	0.0	0.0	0.0	0.0	36.4
WEAI012	VB08	104.6	0.0	697.90	67.9	2.3	-3.0	0.0	0.0	0.0	0.0	37.5
WEAI013	VB09	106.6	0.0	2586.5	79.3	177.6	-3.0	0.0	0.0	0.0	0.0	24.6
WEAI014	VB10	106.6	0.0	2230.4	78.0	134.1	-3.0	0.0	0.0	0.0	0.0	26.5
WEAI015	VB11	106.6	0.0	1903.2	76.6	94.0	-3.0	0.0	0.0	0.0	0.0	28.4
WEAI016	VB12	106.6	0.0	814.07	69.2	2.5	-3.0	0.0	0.0	0.0	0.0	37.8
WEAI017	VB13	106.6	0.0	773.43	68.8	2.4	-3.0	0.0	0.0	0.0	0.0	38.4
WEAI018	VB14	106.6	0.0	1001.3	71.0	3.0	-3.0	0.0	0.0	0.0	0.0	35.6
WEAI019	VB15	106.6	0.0	1196.5	72.6	7.9	-3.0	0.0	0.0	0.0	0.0	33.7
WEAI020	VB16	105.6	0.0	1220.3	72.7	10.9	-3.0	0.0	0.0	0.0	0.0	32.5
WEAI021	VB17	106.6	0.0	1551.5	74.8	50.5	-3.0	0.0	0.0	0.0	0.0	30.8
WEAI022	VB18	107.9	0.0	1503.3	74.5	43.2	-3.0	0.0	0.0	0.0	0.0	32.4
WEAI023	VB19	106.6	0.0	1608.9	75.1	57.6	-3.0	0.0	0.0	0.0	0.0	30.3
WEAI024	VB20	106.6	0.0	1844.9	76.3	86.8	-3.0	0.0	0.0	0.0	0.0	28.7
WEAI025	VB21	106.6	0.0	2082.0	77.4	115.9	-3.0	0.0	0.0	0.0	0.0	27.3
WEAI026	VB22	107.9	0.0	1985.3	77.0	102.8	-3.0	0.0	0.0	0.0	0.0	29.2
WEAI027	VB23	103.7	0.0	2250.5	78.0	139.5	-3.0	0.0	0.0	0.0	0.0	23.5
WEAI028	VB24	106.6	0.0	2351.1	78.4	148.9	-3.0	0.0	0.0	0.0	0.0	25.8

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt003	IO-03	32511291.0	6079064.0	25.0	46.3

ISO 9613-	2	LfT = Lw +	Dc - A	div - Aatm	ı - Agr - A	fol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw		Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	1434.5	74.1	4.3	-3.0	0.0	0.0	0.0	0.0	31.1
WEAI002	ZB02	103.5	0.0	926.21	70.3	3.8	-3.0	0.0	0.0	0.0	0.0	32.3
WEAI004	ZB03	102.4	0.0	546.72	65.8	2.4	-3.0	0.0	0.0	0.0	0.0	37.3
WEAI005	VB01	105.1	0.0	2788.3	79.9	202.6	-3.0	0.0	0.0	0.0	0.0	23.2
WEAI006	VB02	105.6	0.0	2747.3	79.8	197.6	-3.0	0.0	0.0	0.0	0.0	23.4
WEAI007	VB03	106.6	0.0	1834.4	76.3	85.5	-3.0	0.0	0.0	0.0	0.0	28.8
WEAI008	VB04	106.6	0.0	1941.0	76.8	98.6	-3.0	0.0	0.0	0.0	0.0	28.1
WEAI009	VB05	106.6	0.0	667.17	67.5	2.2	-3.0	0.0	0.0	0.0	0.0	39.9
WEAI010	VB06	106.6	0.0	575.98	66.2	2.0	-3.0	0.0	0.0	0.0	0.0	41.4
WEAI011	VB07	104.3	0.0	601.96	66.6	2.0	-3.0	0.0	0.0	0.0	0.0	38.7
WEAI012	VB08	104.6	0.0	916.31	70.2	2.8	-3.0	0.0	0.0	0.0	0.0	34.6
WEAI013	VB09	106.6	0.0	1698.8	75.6	68.7	-3.0	0.0	0.0	0.0	0.0	29.7
WEAI014	VB10	106.6	0.0	1342.7	73.6	24.5	-3.0	0.0	0.0	0.0	0.0	32.4
WEAI015	VB11	106.6	0.0	1021.7	71.2	3.0	-3.0	0.0	0.0	0.0	0.0	35.4
WEAI016	VB12	106.6	0.0	1346.7	73.6	25.0	-3.0	0.0	0.0	0.0	0.0	32.4
WEAI017	VB13	106.6	0.0	1499.0	74.5	44.0	-3.0	0.0	0.0	0.0	0.0	31.2
WEAI018	VB14	106.6	0.0	1816.4	76.2	83.3	-3.0	0.0	0.0	0.0	0.0	28.9
WEAI019	VB15	106.6	0.0	2065.8	77.3	114.0	-3.0	0.0	0.0	0.0	0.0	27.4
WEAI020	VB16	105.6	0.0	1874.4	76.5	91.4	-3.0	0.0	0.0	0.0	0.0	27.6
WEAI021	VB17	106.6	0.0	2427.0	78.7	158.1	-3.0	0.0	0.0	0.0	0.0	25.4
WEAI022	VB18	107.9	0.0	2303.0	78.2	141.7	-3.0	0.0	0.0	0.0	0.0	27.4
WEAI023	VB19	106.6	0.0	2332.5	78.4	146.6	-3.0	0.0	0.0	0.0	0.0	25.9
WEAI024	VB20	106.6	0.0	2666.6	79.5	187.3	-3.0	0.0	0.0	0.0	0.0	24.3
WEAI025	VB21	106.6	0.0	2941.3	80.4	220.7	-3.0	0.0	0.0	0.0	0.0	23.0
WEAI026	VB22	107.9	0.0	2751.3	79.8	196.3	-3.0	0.0	0.0	0.0	0.0	25.2
WEAI027	VB23	103.7	0.0	3074.8	80.8	239.7	-3.0	0.0	0.0	0.0	0.0	19.5
WEAI028	VB24	106.6	0.0	3124.5	80.9	242.9	-3.0	0.0	0.0	0.0	0.0	22.2

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt004	IO-04	32510984.0	6078916.0	23.3	45.0

ISO 9613-	2	LfT = Lw +	Dc - A	div - Aatm	- Agr - A	fol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw		Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	1232.4	72.8	3.9	-3.0	0.0	0.0	0.0	0.0	32.9
WEAI002	ZB02	103.5	0.0	722.59	68.2	3.2	-3.0	0.0	0.0	0.0	0.0	35.1
WEAI004	ZB03	102.4	0.0	836.41	69.4	3.3	-3.0	0.0	0.0	0.0	0.0	32.6
WEAI005	VB01	105.1	0.0	2490.4	78.9	166.4	-3.0	0.0	0.0	0.0	0.0	24.6
WEAI006	VB02	105.6	0.0	2434.9	78.7	159.6	-3.0	0.0	0.0	0.0	0.0	24.9
WEAI007	VB03	106.6	0.0	1494.5	74.5	43.4	-3.0	0.0	0.0	0.0	0.0	31.2
WEAI008	VB04	106.6	0.0	1613.9	75.2	58.2	-3.0	0.0	0.0	0.0	0.0	30.3
WEAI009	VB05	106.6	0.0	630.07	67.0	2.1	-3.0	0.0	0.0	0.0	0.0	40.5
WEAI010	VB06	106.6	0.0	721.63	68.2	2.3	-3.0	0.0	0.0	0.0	0.0	39.1
WEAI011	VB07	104.3	0.0	938.52	70.4	2.8	-3.0	0.0	0.0	0.0	0.0	34.0
WEAI012	VB08	104.6	0.0	1242.9	72.9	14.3	-3.0	0.0	0.0	0.0	0.0	31.3
WEAI013	VB09	106.6	0.0	1568.6	74.9	52.6	-3.0	0.0	0.0	0.0	0.0	30.6
WEAI014	VB10	106.6	0.0	1234.1	72.8	11.5	-3.0	0.0	0.0	0.0	0.0	33.3
WEAI015	VB11	106.6	0.0	976.68	70.8	2.9	-3.0	0.0	0.0	0.0	0.0	35.9
WEAI016	VB12	106.6	0.0	1653.7	75.4	63.2	-3.0	0.0	0.0	0.0	0.0	30.0
WEAI017	VB13	106.6	0.0	1771.5	76.0	77.7	-3.0	0.0	0.0	0.0	0.0	29.2
WEAI018	VB14	106.6	0.0	2062.9	77.3	113.6	-3.0	0.0	0.0	0.0	0.0	27.4
WEAI019	VB15	106.6	0.0	2276.7	78.1	139.8	-3.0	0.0	0.0	0.0	0.0	26.2
WEAI020	VB16	105.6	0.0	2171.7	77.7	127.9	-3.0	0.0	0.0	0.0	0.0	25.8
WEAI021	VB17	106.6	0.0	2630.6	79.4	182.9	-3.0	0.0	0.0	0.0	0.0	24.4
WEAI022	VB18	107.9	0.0	2560.7	79.2	173.1	-3.0	0.0	0.0	0.0	0.0	26.1
WEAI023	VB19	106.6	0.0	2617.3	79.4	181.3	-3.0	0.0	0.0	0.0	0.0	24.5
WEAI024	VB20	106.6	0.0	2915.0	80.3	217.5	-3.0	0.0	0.0	0.0	0.0	23.1
WEAI025	VB21	106.6	0.0	3163.9	81.0	247.6	-3.0	0.0	0.0	0.0	0.0	22.1
WEAI026	VB22	107.9	0.0	3025.0	80.6	229.5	-3.0	0.0	0.0	0.0	0.0	24.0
WEAI027	VB23	103.7	0.0	3323.0	81.4	269.8	-3.0	0.0	0.0	0.0	0.0	18.5
WEAI028	VB24	106.6	0.0	3396.9	81.6	275.8	-3.0	0.0	0.0	0.0	0.0	21.1

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt005	IO-05	32510226.0	6078926.0	24.4	46.3

ISO 9613-	2	LfT = Lw +	Dc - A	div - Aatm	n - Agr - A	fol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	731.34	68.3	2.7	-3.0	0.0	0.0	0.0	0.0	38.6
WEAI002	ZB02	103.5	0.0	477.82	64.6	2.3	-3.0	0.0	0.0	0.0	0.0	39.6
WEAI004	ZB03	102.4	0.0	1440.1	74.2	4.9	-3.0	0.0	0.0	0.0	0.0	26.4
WEAI005	VB01	105.1	0.0	1736.0	75.8	74.0	-3.0	0.0	0.0	0.0	0.0	28.8
WEAI006	VB02	105.6	0.0	1677.9	75.5	66.8	-3.0	0.0	0.0	0.0	0.0	29.3
WEAI007	VB03	106.6	0.0	860.07	69.7	2.6	-3.0	0.0	0.0	0.0	0.0	37.3
WEAI008	VB04	106.6	0.0	1193.5	72.5	7.7	-3.0	0.0	0.0	0.0	0.0	33.7
WEAI009	VB05	106.6	0.0	830.45	69.4	2.6	-3.0	0.0	0.0	0.0	0.0	37.6
WEAI010	VB06	106.6	0.0	1150.6	72.2	5.0	-3.0	0.0	0.0	0.0	0.0	34.1
WEAI011	VB07	104.3	0.0	1665.4	75.4	66.9	-3.0	0.0	0.0	0.0	0.0	27.6
WEAI012	VB08	104.6	0.0	1987.9	77.0	106.4	-3.0	0.0	0.0	0.0	0.0	25.9
WEAI013	VB09	106.6	0.0	1185.2	72.5	7.0	-3.0	0.0	0.0	0.0	0.0	33.8
WEAI014	VB10	106.6	0.0	976.99	70.8	2.9	-3.0	0.0	0.0	0.0	0.0	35.9
WEAI015	VB11	106.6	0.0	960.38	70.6	2.9	-3.0	0.0	0.0	0.0	0.0	36.1
WEAI016	VB12	106.6	0.0	2409.2	78.6	156.0	-3.0	0.0	0.0	0.0	0.0	25.5
WEAI017	VB13	106.6	0.0	2524.5	79.0	170.0	-3.0	0.0	0.0	0.0	0.0	24.9
WEAI018	VB14	106.6	0.0	2804.1	80.0	204.0	-3.0	0.0	0.0	0.0	0.0	23.6
WEAI019	VB15	106.6	0.0	2993.1	80.5	227.0	-3.0	0.0	0.0	0.0	0.0	22.8
WEAI020	VB16	105.6	0.0	2929.1	80.3	220.2	-3.0	0.0	0.0	0.0	0.0	22.1
WEAI021	VB17	106.6	0.0	3337.8	81.5	268.7	-3.0	0.0	0.0	0.0	0.0	21.4
WEAI022	VB18	107.9	0.0	3305.8	81.4	263.5	-3.0	0.0	0.0	0.0	0.0	22.8
WEAI023	VB19	106.6	0.0	3372.8	81.6	272.9	-3.0	0.0	0.0	0.0	0.0	21.2
WEAI024	VB20	106.6	0.0	3653.7	82.3	306.8	-3.0	0.0	0.0	0.0	0.0	20.2
WEAI025	VB21	106.6	0.0	3883.2	82.8	334.4	-3.0	0.0	0.0	0.0	0.0	19.4
WEAI026	VB22	107.9	0.0	3776.6	82.5	320.3	-3.0	0.0	0.0	0.0	0.0	21.0
WEAI027	VB23	103.7	0.0	4060.4	83.2	358.6	-3.0	0.0	0.0	0.0	0.0	15.9
WEAI028	VB24	106.6	0.0	4147.5	83.4	366.2	-3.0	0.0	0.0	0.0	0.0	18.5

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt006	IO-06	32510018.0	6078918.0	24.6	45.7

ISO 9613-	-2	LfT = Lw +	Dc - A	div - Aatm	- Agr - A	fol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	693.06	67.8	2.6	-3.0	0.0	0.0	0.0	0.0	39.2
WEAI002	ZB02	103.5	0.0	598.17	66.5	2.7	-3.0	0.0	0.0	0.0	0.0	37.2
WEAI004	ZB03	102.4	0.0	1632.6	75.3	5.3	-3.0	0.0	0.0	0.0	0.0	24.9
WEAI005	VB01	105.1	0.0	1531.2	74.7	48.7	-3.0	0.0	0.0	0.0	0.0	30.2
WEAI006	VB02	105.6	0.0	1470.1	74.3	41.0	-3.0	0.0	0.0	0.0	0.0	30.8
WEAI007	VB03	106.6	0.0	719.75	68.1	2.3	-3.0	0.0	0.0	0.0	0.0	39.1
WEAI008	VB04	106.6	0.0	1130.4	72.1	4.3	-3.0	0.0	0.0	0.0	0.0	34.3
WEAI009	VB05	106.6	0.0	991.77	70.9	2.9	-3.0	0.0	0.0	0.0	0.0	35.7
WEAI010	VB06	106.6	0.0	1326.6	73.5	22.5	-3.0	0.0	0.0	0.0	0.0	32.5
WEAI011	VB07	104.3	0.0	1871.1	76.4	92.3	-3.0	0.0	0.0	0.0	0.0	26.3
WEAI012	VB08	104.6	0.0	2195.1	77.8	131.8	-3.0	0.0	0.0	0.0	0.0	24.7
WEAI013	VB09	106.6	0.0	1157.9	72.3	5.4	-3.0	0.0	0.0	0.0	0.0	34.1
WEAI014	VB10	106.6	0.0	1010.2	71.1	3.0	-3.0	0.0	0.0	0.0	0.0	35.5
WEAI015	VB11	106.6	0.0	1064.7	71.5	3.3	-3.0	0.0	0.0	0.0	0.0	35.0
WEAI016	VB12	106.6	0.0	2617.1	79.4	181.3	-3.0	0.0	0.0	0.0	0.0	24.5
WEAI017	VB13	106.6	0.0	2730.7	79.7	195.1	-3.0	0.0	0.0	0.0	0.0	24.0
WEAI018	VB14	106.6	0.0	3007.1	80.6	228.7	-3.0	0.0	0.0	0.0	0.0	22.7
WEAI019	VB15	106.6	0.0	3190.1	81.1	250.8	-3.0	0.0	0.0	0.0	0.0	22.0
WEAI020	VB16	105.6	0.0	3136.8	80.9	245.4	-3.0	0.0	0.0	0.0	0.0	21.2
WEAI021	VB17	106.6	0.0	3532.2	82.0	292.1	-3.0	0.0	0.0	0.0	0.0	20.6
WEAI022	VB18	107.9	0.0	3509.5	81.9	288.1	-3.0	0.0	0.0	0.0	0.0	22.0
WEAI023	VB19	106.6	0.0	3579.6	82.1	297.8	-3.0	0.0	0.0	0.0	0.0	20.5
WEAI024	VB20	106.6	0.0	3855.6	82.7	331.1	-3.0	0.0	0.0	0.0	0.0	19.5
WEAI025	VB21	106.6	0.0	4080.1	83.2	358.1	-3.0	0.0	0.0	0.0	0.0	18.7
WEAI026	VB22	107.9	0.0	3982.0	83.0	345.0	-3.0	0.0	0.0	0.0	0.0	20.3
WEAI027	VB23	103.7	0.0	4261.8	83.6	382.8	-3.0	0.0	0.0	0.0	0.0	15.2
WEAI028	VB24	106.6	0.0	4352.5	83.8	390.8	-3.0	0.0	0.0	0.0	0.0	17.8

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt007	IO-07	32509917.0	6078949.0	25.0	45.8

ISO 9613-	-2	LfT = Lw +	Dc - A	div - Aatm	n - Agr - A	fol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	662.14	67.4	2.5	-3.0	0.0	0.0	0.0	0.0	39.7
WEAI002	ZB02	103.5	0.0	650.21	67.3	2.9	-3.0	0.0	0.0	0.0	0.0	36.3
WEAI004	ZB03	102.4	0.0	1714.9	75.7	5.4	-3.0	0.0	0.0	0.0	0.0	24.3
WEAI005	VB01	105.1	0.0	1427.0	74.1	35.7	-3.0	0.0	0.0	0.0	0.0	31.0
WEAI006	VB02	105.6	0.0	1370.4	73.7	28.5	-3.0	0.0	0.0	0.0	0.0	31.5
WEAI007	VB03	106.6	0.0	695.40	67.8	2.3	-3.0	0.0	0.0	0.0	0.0	39.5
WEAI008	VB04	106.6	0.0	1147.1	72.2	4.9	-3.0	0.0	0.0	0.0	0.0	34.2
WEAI009	VB05	106.6	0.0	1056.9	71.5	3.2	-3.0	0.0	0.0	0.0	0.0	35.1
WEAI010	VB06	106.6	0.0	1398.4	73.9	31.4	-3.0	0.0	0.0	0.0	0.0	31.9
WEAI011	VB07	104.3	0.0	1965.6	76.9	103.9	-3.0	0.0	0.0	0.0	0.0	25.7
WEAI012	VB08	104.6	0.0	2292.0	78.2	143.7	-3.0	0.0	0.0	0.0	0.0	24.1
WEAI013	VB09	106.6	0.0	1123.2	72.0	4.1	-3.0	0.0	0.0	0.0	0.0	34.4
WEAI014	VB10	106.6	0.0	1008.1	71.1	3.0	-3.0	0.0	0.0	0.0	0.0	35.6
WEAI015	VB11	106.6	0.0	1098.3	71.8	3.6	-3.0	0.0	0.0	0.0	0.0	34.6
WEAI016	VB12	106.6	0.0	2717.1	79.7	193.5	-3.0	0.0	0.0	0.0	0.0	24.0
WEAI017	VB13	106.6	0.0	2834.0	80.0	207.7	-3.0	0.0	0.0	0.0	0.0	23.5
WEAI018	VB14	106.6	0.0	3111.9	80.9	241.3	-3.0	0.0	0.0	0.0	0.0	22.3
WEAI019	VB15	106.6	0.0	3295.7	81.4	263.6	-3.0	0.0	0.0	0.0	0.0	21.5
WEAI020	VB16	105.6	0.0	3238.4	81.2	257.6	-3.0	0.0	0.0	0.0	0.0	20.8
WEAI021	VB17	106.6	0.0	3637.8	82.2	304.9	-3.0	0.0	0.0	0.0	0.0	20.2
WEAI022	VB18	107.9	0.0	3614.1	82.2	300.7	-3.0	0.0	0.0	0.0	0.0	21.6
WEAI023	VB19	106.6	0.0	3682.5	82.3	310.2	-3.0	0.0	0.0	0.0	0.0	20.1
WEAI024	VB20	106.6	0.0	3960.7	83.0	343.7	-3.0	0.0	0.0	0.0	0.0	19.1
WEAI025	VB21	106.6	0.0	4185.7	83.4	370.8	-3.0	0.0	0.0	0.0	0.0	18.3
WEAI026	VB22	107.9	0.0	4085.9	83.2	357.5	-3.0	0.0	0.0	0.0	0.0	20.0
WEAI027	VB23	103.7	0.0	4367.0	83.8	395.5	-3.0	0.0	0.0	0.0	0.0	14.9
WEAI028	VB24	106.6	0.0	4456.6	84.0	403.3	-3.0	0.0	0.0	0.0	0.0	17.5

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt008	IO-08	32509890.0	6078996.0	25.0	45.9

ISO 9613-	2	LfT = Lw +	Dc - A	div - Aatm	n - Agr - A	fol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	618.68	66.8	2.3	-3.0	0.0	0.0	0.0	0.0	40.4
WEAI002	ZB02	103.5	0.0	644.29	67.2	2.9	-3.0	0.0	0.0	0.0	0.0	36.4
WEAI004	ZB03	102.4	0.0	1724.5	75.7	5.5	-3.0	0.0	0.0	0.0	0.0	24.2
WEAI005	VB01	105.1	0.0	1394.8	73.9	31.7	-3.0	0.0	0.0	0.0	0.0	31.2
WEAI006	VB02	105.6	0.0	1346.5	73.6	25.6	-3.0	0.0	0.0	0.0	0.0	31.7
WEAI007	VB03	106.6	0.0	726.80	68.2	2.3	-3.0	0.0	0.0	0.0	0.0	39.0
WEAI008	VB04	106.6	0.0	1191.7	72.5	7.5	-3.0	0.0	0.0	0.0	0.0	33.7
WEAI009	VB05	106.6	0.0	1055.8	71.5	3.2	-3.0	0.0	0.0	0.0	0.0	35.1
WEAI010	VB06	106.6	0.0	1400.7	73.9	31.7	-3.0	0.0	0.0	0.0	0.0	31.9
WEAI011	VB07	104.3	0.0	1985.8	77.0	106.4	-3.0	0.0	0.0	0.0	0.0	25.6
WEAI012	VB08	104.6	0.0	2314.8	78.3	146.4	-3.0	0.0	0.0	0.0	0.0	24.0
WEAI013	VB09	106.6	0.0	1076.8	71.6	3.4	-3.0	0.0	0.0	0.0	0.0	34.9
WEAI014	VB10	106.6	0.0	973.35	70.8	2.9	-3.0	0.0	0.0	0.0	0.0	35.9
WEAI015	VB11	106.6	0.0	1079.4	71.7	3.4	-3.0	0.0	0.0	0.0	0.0	34.8
WEAI016	VB12	106.6	0.0	2743.6	79.8	196.7	-3.0	0.0	0.0	0.0	0.0	23.9
WEAI017	VB13	106.6	0.0	2865.6	80.1	211.5	-3.0	0.0	0.0	0.0	0.0	23.3
WEAI018	VB14	106.6	0.0	3147.0	81.0	245.6	-3.0	0.0	0.0	0.0	0.0	22.1
WEAI019	VB15	106.6	0.0	3334.7	81.5	268.3	-3.0	0.0	0.0	0.0	0.0	21.4
WEAI020	VB16	105.6	0.0	3266.8	81.3	261.1	-3.0	0.0	0.0	0.0	0.0	20.7
WEAI021	VB17	106.6	0.0	3678.2	82.3	309.7	-3.0	0.0	0.0	0.0	0.0	20.1
WEAI022	VB18	107.9	0.0	3648.6	82.2	304.9	-3.0	0.0	0.0	0.0	0.0	21.5
WEAI023	VB19	106.6	0.0	3713.2	82.4	313.9	-3.0	0.0	0.0	0.0	0.0	20.0
WEAI024	VB20	106.6	0.0	3996.7	83.0	348.1	-3.0	0.0	0.0	0.0	0.0	19.0
WEAI025	VB21	106.6	0.0	4224.9	83.5	375.5	-3.0	0.0	0.0	0.0	0.0	18.2
WEAI026	VB22	107.9	0.0	4118.7	83.3	361.4	-3.0	0.0	0.0	0.0	0.0	19.9
WEAI027	VB23	103.7	0.0	4403.4	83.9	399.8	-3.0	0.0	0.0	0.0	0.0	14.8
WEAI028	VB24	106.6	0.0	4489.8	84.0	407.3	-3.0	0.0	0.0	0.0	0.0	17.4

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt009	IO-09	32509362.0	6079254.0	23.0	44.3

ISO 9613-	2	LfT = Lw +	Dc - A	div - Aatm	n - Agr - A	fol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	704.34	68.0	2.6	-3.0	0.0	0.0	0.0	0.0	39.0
WEAI002	ZB02	103.5	0.0	1065.5	71.6	4.2	-3.0	0.0	0.0	0.0	0.0	30.7
WEAI004	ZB03	102.4	0.0	2180.7	77.8	6.3	-3.0	0.0	0.0	0.0	0.0	21.4
WEAI005	VB01	105.1	0.0	869.75	69.8	2.0	-3.0	0.0	0.0	0.0	0.0	36.3
WEAI006	VB02	105.6	0.0	895.63	70.0	2.4	-3.0	0.0	0.0	0.0	0.0	36.1
WEAI007	VB03	106.6	0.0	961.26	70.7	2.9	-3.0	0.0	0.0	0.0	0.0	36.1
WEAI008	VB04	106.6	0.0	1515.1	74.6	46.0	-3.0	0.0	0.0	0.0	0.0	31.0
WEAI009	VB05	106.6	0.0	1469.9	74.3	40.3	-3.0	0.0	0.0	0.0	0.0	31.4
WEAI010	VB06	106.6	0.0	1820.2	76.2	83.7	-3.0	0.0	0.0	0.0	0.0	28.9
WEAI011	VB07	104.3	0.0	2497.6	79.0	169.1	-3.0	0.0	0.0	0.0	0.0	22.8
WEAI012	VB08	104.6	0.0	2836.6	80.1	210.0	-3.0	0.0	0.0	0.0	0.0	21.5
WEAI013	VB09	106.6	0.0	993.71	70.9	2.9	-3.0	0.0	0.0	0.0	0.0	35.7
WEAI014	VB10	106.6	0.0	1095.4	71.8	3.6	-3.0	0.0	0.0	0.0	0.0	34.7
WEAI015	VB11	106.6	0.0	1355.5	73.6	26.1	-3.0	0.0	0.0	0.0	0.0	32.3
WEAI016	VB12	106.6	0.0	3280.9	81.3	261.8	-3.0	0.0	0.0	0.0	0.0	21.6
WEAI017	VB13	106.6	0.0	3424.1	81.7	279.1	-3.0	0.0	0.0	0.0	0.0	21.0
WEAI018	VB14	106.6	0.0	3717.2	82.4	314.4	-3.0	0.0	0.0	0.0	0.0	19.9
WEAI019	VB15	106.6	0.0	3915.3	82.9	338.3	-3.0	0.0	0.0	0.0	0.0	19.3
WEAI020	VB16	105.6	0.0	3811.5	82.6	326.8	-3.0	0.0	0.0	0.0	0.0	18.6
WEAI021	VB17	106.6	0.0	4261.3	83.6	379.9	-3.0	0.0	0.0	0.0	0.0	18.1
WEAI022	VB18	107.9	0.0	4216.4	83.5	373.2	-3.0	0.0	0.0	0.0	0.0	19.5
WEAI023	VB19	106.6	0.0	4266.8	83.6	380.5	-3.0	0.0	0.0	0.0	0.0	18.1
WEAI024	VB20	106.6	0.0	4569.1	84.2	416.8	-3.0	0.0	0.0	0.0	0.0	17.1
WEAI025	VB21	106.6	0.0	4805.6	84.6	445.1	-3.0	0.0	0.0	0.0	0.0	16.4
WEAI026	VB22	107.9	0.0	4679.6	84.4	428.8	-3.0	0.0	0.0	0.0	0.0	18.1
WEAI027	VB23	103.7	0.0	4976.8	84.9	468.6	-3.0	0.0	0.0	0.0	0.0	13.0
WEAI028	VB24	106.6	0.0	5052.1	85.1	474.7	-3.0	0.0	0.0	0.0	0.0	15.7

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt010	IO-10	32509354.0	6079278.0	23.0	44.3

ISO 9613-	2	LfT = Lw +	Dc - A	div - Aatm	n - Agr - <i>A</i>	fol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	699.84	67.9	2.6	-3.0	0.0	0.0	0.0	0.0	39.1
WEAI002	ZB02	103.5	0.0	1071.6	71.6	4.3	-3.0	0.0	0.0	0.0	0.0	30.6
WEAI004	ZB03	102.4	0.0	2185.6	77.8	6.3	-3.0	0.0	0.0	0.0	0.0	21.3
WEAI005	VB01	105.1	0.0	865.49	69.7	2.0	-3.0	0.0	0.0	0.0	0.0	36.3
WEAI006	VB02	105.6	0.0	898.62	70.1	2.4	-3.0	0.0	0.0	0.0	0.0	36.1
WEAI007	VB03	106.6	0.0	986.41	70.9	2.9	-3.0	0.0	0.0	0.0	0.0	35.8
WEAI008	VB04	106.6	0.0	1540.4	74.8	49.1	-3.0	0.0	0.0	0.0	0.0	30.8
WEAI009	VB05	106.6	0.0	1473.7	74.4	40.8	-3.0	0.0	0.0	0.0	0.0	31.4
WEAI010	VB06	106.6	0.0	1823.5	76.2	84.1	-3.0	0.0	0.0	0.0	0.0	28.9
WEAI011	VB07	104.3	0.0	2505.8	79.0	170.0	-3.0	0.0	0.0	0.0	0.0	22.7
WEAI012	VB08	104.6	0.0	2845.3	80.1	211.0	-3.0	0.0	0.0	0.0	0.0	21.4
WEAI013	VB09	106.6	0.0	978.76	70.8	2.9	-3.0	0.0	0.0	0.0	0.0	35.9
WEAI014	VB10	106.6	0.0	1088.0	71.7	3.5	-3.0	0.0	0.0	0.0	0.0	34.7
WEAI015	VB11	106.6	0.0	1353.2	73.6	25.8	-3.0	0.0	0.0	0.0	0.0	32.3
WEAI016	VB12	106.6	0.0	3290.7	81.3	263.0	-3.0	0.0	0.0	0.0	0.0	21.6
WEAI017	VB13	106.6	0.0	3436.0	81.7	280.5	-3.0	0.0	0.0	0.0	0.0	21.0
WEAI018	VB14	106.6	0.0	3730.5	82.4	316.0	-3.0	0.0	0.0	0.0	0.0	19.9
WEAI019	VB15	106.6	0.0	3930.4	82.9	340.1	-3.0	0.0	0.0	0.0	0.0	19.2
WEAI020	VB16	105.6	0.0	3821.9	82.6	328.0	-3.0	0.0	0.0	0.0	0.0	18.6
WEAI021	VB17	106.6	0.0	4276.9	83.6	381.7	-3.0	0.0	0.0	0.0	0.0	18.1
WEAI022	VB18	107.9	0.0	4229.3	83.5	374.7	-3.0	0.0	0.0	0.0	0.0	19.5
WEAI023	VB19	106.6	0.0	4278.0	83.6	381.9	-3.0	0.0	0.0	0.0	0.0	18.0
WEAI024	VB20	106.6	0.0	4582.7	84.2	418.4	-3.0	0.0	0.0	0.0	0.0	17.1
WEAI025	VB21	106.6	0.0	4820.6	84.7	446.9	-3.0	0.0	0.0	0.0	0.0	16.4
WEAI026	VB22	107.9	0.0	4691.7	84.4	430.2	-3.0	0.0	0.0	0.0	0.0	18.1
WEAI027	VB23	103.7	0.0	4990.5	85.0	470.2	-3.0	0.0	0.0	0.0	0.0	13.0
WEAI028	VB24	106.6	0.0	5064.2	85.1	476.1	-3.0	0.0	0.0	0.0	0.0	15.7

IPKT	IPKT: Bezeichnung	IPKT: x /m	IPKT: y /m	IPKT: z /m	Lr(IP) /dB(A)
IPkt011	IO-11	32509431.0	6079917.0	22.3	45.6

ISO 9613-	-2	LfT = Lw +	Dc - A	div - Aatm	- Agr - A	Afol - Ahou	ıs - Abar	- Cmet				
Element	Bezeichnung	Lw	Dc	Abstand	Adiv	Aatm	Agr	Afol	Ahous	Abar	Cmet	LfT
		/dB	/dB	/m	/dB	/dB	/dB	/dB	/dB	/dB	/dB	/dB
WEAI001	ZB01	106.6	0.0	631.33	67.0	2.4	-3.0	0.0	0.0	0.0	0.0	40.2
WEAI002	ZB02	103.5	0.0	1143.8	72.2	4.5	-3.0	0.0	0.0	0.0	0.0	29.9
WEAI004	ZB03	102.4	0.0	2123.9	77.5	6.2	-3.0	0.0	0.0	0.0	0.0	21.7
WEAI005	VB01	105.1	0.0	1214.8	72.7	10.0	-3.0	0.0	0.0	0.0	0.0	32.8
WEAI006	VB02	105.6	0.0	1359.3	73.7	27.2	-3.0	0.0	0.0	0.0	0.0	31.6
WEAI007	VB03	106.6	0.0	1599.7	75.1	56.5	-3.0	0.0	0.0	0.0	0.0	30.4
WEAI008	VB04	106.6	0.0	2143.1	77.6	123.4	-3.0	0.0	0.0	0.0	0.0	27.0
WEAI009	VB05	106.6	0.0	1435.6	74.1	36.0	-3.0	0.0	0.0	0.0	0.0	31.7
WEAI010	VB06	106.6	0.0	1741.9	75.8	74.1	-3.0	0.0	0.0	0.0	0.0	29.4
WEAI011	VB07	104.3	0.0	2519.7	79.0	171.7	-3.0	0.0	0.0	0.0	0.0	22.7
WEAI012	VB08	104.6	0.0	2864.1	80.1	213.3	-3.0	0.0	0.0	0.0	0.0	21.4
WEAI013	VB09	106.6	0.0	523.14	65.4	1.8	-3.0	0.0	0.0	0.0	0.0	42.4
WEAI014	VB10	106.6	0.0	817.03	69.2	2.5	-3.0	0.0	0.0	0.0	0.0	37.8
WEAI015	VB11	106.6	0.0	1173.4	72.4	6.2	-3.0	0.0	0.0	0.0	0.0	33.9
WEAI016	VB12	106.6	0.0	3330.2	81.4	267.7	-3.0	0.0	0.0	0.0	0.0	21.4
WEAI017	VB13	106.6	0.0	3529.9	82.0	291.8	-3.0	0.0	0.0	0.0	0.0	20.6
WEAI018	VB14	106.6	0.0	3859.3	82.7	331.5	-3.0	0.0	0.0	0.0	0.0	19.4
WEAI019	VB15	106.6	0.0	4106.6	83.3	361.3	-3.0	0.0	0.0	0.0	0.0	18.6
WEAI020	VB16	105.6	0.0	3867.2	82.7	333.5	-3.0	0.0	0.0	0.0	0.0	18.4
WEAI021	VB17	106.6	0.0	4465.7	84.0	404.4	-3.0	0.0	0.0	0.0	0.0	17.5
WEAI022	VB18	107.9	0.0	4340.3	83.8	388.1	-3.0	0.0	0.0	0.0	0.0	19.1
WEAI023	VB19	106.6	0.0	4340.5	83.8	389.4	-3.0	0.0	0.0	0.0	0.0	17.8
WEAI024	VB20	106.6	0.0	4707.7	84.5	433.4	-3.0	0.0	0.0	0.0	0.0	16.7
WEAI025	VB21	106.6	0.0	4986.3	85.0	466.8	-3.0	0.0	0.0	0.0	0.0	15.9
WEAI026	VB22	107.9	0.0	4771.7	84.6	439.8	-3.0	0.0	0.0	0.0	0.0	17.8
WEAI027	VB23	103.7	0.0	5115.5	85.2	485.1	-3.0	0.0	0.0	0.0	0.0	12.7
WEAI028	VB24	106.6	0.0	5144.5	85.2	485.7	-3.0	0.0	0.0	0.0	0.0	15.5

10.15 Legende zu Anlage 10.14

DIN/ISO 9613-2, Okt.1999. Dämpfung des Schalls bei der Ausbreitung im Freien - Teil 2: Allgemeines Berechnungsverfahren

101	AM	/dB	Gesamtes Ausbreitungsmaß = Differenz zwischen Emission und Immission	
102	DC	/dB	Raumwinkelmaß+Richtwirkungsmaß+Bodenreflexion (frqunabh. Berechnung)	
			Dc = D0 + DI + Domega	
103	DI	/dB	Richtwirkungsmaß	
104	Adiv	/dB	Abstandsmaß	
105	Aatm	/dB	Luftabsorptionsmaß	
106	Agr	/dB	Bodendämpfungsmaß in dB	
107	Afol	/dB	Bewuchsdämpfungsmaß	
108	Ahous	/dB	Bebauungsdämpfungsmaß	
109	Ddg	/dB	Summe von Bewuchs- und Bebauungsdämpfungsmaß	
110	Abar	/dB	Einfügungsdämpfungsmaß eines Schallschirms	
111	Cmet	/dB	Meteorologische Korrektur	
112	Lw	/dB	Schallleistungspegel	
113	LfT	/dB	Lr,i	
114	Lr,i	/dB	Teilpegel der i-ten Quelle	
115	Lr,(IP)	/dB	Gesamtpegel am Immissionspunkt	

10.16 Fotodokumentation

IO-01 Erlenweg 4, Jardelund

IO-02 Erlenweg 5, Böxlund

IO-03 Grenzauweg 3, Böxlund

IO-04 Grenzstraße 1, Böxlund

IO-05 Weesbydamm 14, Weesby

IO-06 Kjerweg 4, Weesby

IO-07 Kjerweg 3, Weesby

IO-08 Kjerweg 1, Weesby

IO-09 Bögelhuus 2, Weesby

IO-10 Bögelhuus 2a, Weesby

IO-11 Bögelhuus 4, Weesby

WIND-consult GmbH · Reuterstraße 9 · 18211 Bargeshagen

BWP BB Wind GmbH & Co.KG

Dammacker 32

24980 Schafflund

Per E-Mail: brodal@emb-brodal.de

WIND-consult

Ingenieurgesellschaft für umweltschonende Energiewandlung mbH

Reuterstraße 9 18211 Bargeshagen

Tel. +49 (0) 38203 / 50725 e-mail: company@wind-consult.de www.wind-consult.de

Commerzbank AG Rostock IBAN: DE07 1304 0000 0103 5245 00 BIC: COBADEFFXXX

USt-Id.-Nr. DE 137478368 HRB 4221 beim Amtsgericht Rostock

Bargeshagen, 11.06.2025

WICO 018FB123: Ermittlung des Schattenwurfs von Windenergieanlagen (WEA) Nach

den WEA-Schattenwurf-Hinweisen des LAI am Standort Böxlund,

Schleswig-Holstein.

Sehr geehrter Herr Brodal,

am 06.11.2024 erhielten Sie von uns den Prüfbericht WICO 018FB123-01 /1/ über die Ermittlung des Schattenwurfs durch Prognose am oben genannten Standort.

Durch den Auftraggeber wurde uns mitgeteilt, dass sich die Bezeichnung der Anlagentypen für die WEA der Zusatzbelastung geändert hat. Der Anlagentyp der WEA ZB01 und ZB02 hat sich geändert in ENERCON E-160 EP5 E3 R1 und der Anlagentyp der WEA ZB03 hat sich geändert in ENERCON E-138 EP3 E3.

Diese Änderung der Typenbezeichnung hat keine Auswirkungen auf den Schattenwurf der WEA. Die im Bericht WICO 018FB123-01 ermittelten Ergebnisse haben somit weiter Bestand.

Für eventuelle Rückfragen stehen wir jederzeit zur Verfügung und verbleiben mit freundlichen Grüßen

WIND-consult GmbH

C. Hoffmann M.Eng.

(fachl. Verantw. der Messtelle)

Das Dokument wurde elektronisch unterschrieben

Messtelle nach §29b BlmSchö für die Ermittlung von Geräuschen

R. Kiepura M.Sc. (Prüfingenieur)

A Literatur

/1/ WIND-CONSULT GMBH: Prüfbericht WICO 018FB123-01 Ermittlung des Schattenwurfs von Windenergieanlagen (WEA) Nach den WEA-Schattenwurf-Hinweisen des LAI, Standort: Böxlund, Schleswig-Holstein, 06.11.2024

Prüfbericht

WICO 018FB123-01

06.11.2024

Ermittlung des Schattenwurfs von Windenergieanlagen (WEA)

Nach den WEA-Schattenwurf-Hinweisen des LAI

Prüfobjekt: Drei WEA verschiedenen Typs als Zusatzbelastung

Standort: Böxlund, Schleswig-Holstein

•			
Titel:			

Ermittlung des Schattenwurfs von Windenergieanlagen (WEA)

Standort:

Proiekt

Böxlund, Schleswig-Holstein

Aufgabenstellung:

Ermittlung des Schattenwurfs durch Windenergieanlagen (WEA) nach den WEA-Schattenwurf-Hinweisen des LAI /1/ in Verbindung mit den Festlegungen der Prüfanweisung QMP-12 /12/ der WIND-consult GmbH.

Mess/Prüfobjekt:

Drei WEA verschiedenen Typs als Zusatzbelastung

Referenzdokumente:

Keine

Standard:

WEA-Schattenwurf-Hinweise des LAI /1/

Auftrag

Auftraggeber:

BWP BB Wind GmbH & Co.KG, Dammacker 32, 24980 Schafflund

Auftragnehmer:

WIND-consult GmbH, Reuterstraße 9, 18211 Bargeshagen, Deutschland

Auftragsnummer: WICO 018FB123

Auftragserteilung:

09.01.2023

Auftragsbestätigung:

18.01.2023

Prüfingenieur

Bearbeitung: Prüfung: Freigabe:

René Kiepura M.Sc. C. Hoffmann M.Eng. Dipl.-Ing. J. Schwabe

Prüfingenieur

(Dieser Prüfbericht wurde elektronisch unterschrieben.)

Dieser Bericht darf ohne schriftliche Genehmigung der WIND-consult GmbH nur vollständig vervielfältigt und genutzt werden. Die Ergebnisse beziehen sich ausschließlich auf das Mess- / Prüfobjekt.

Geschäftsleitung

Inhaltsverzeichnis

1	EINFÜHRUNG	4
1.1	Aufgabenstellung	4
1.2	VERWENDETE NORMEN UND RICHTLINIEN	4
2	METHODE DER BERECHNUNG UND BEURTEILUNG	5
2.1	Mathematisch-physikalische Grundlagen zum Schattenwurf	5
2.2		6
2.3	Tabellarische Darstellung der Ergebnisse	6
2.4	Graphische Darstellung des Ganzjährigen Schattenverlaufs von WEA	6
3	STANDORT- UND PROJEKTBESCHREIBUNG	8
4	EINGANGSDATEN FÜR DIE BERECHNUNG	9
4.1	KOORDINATENSYSTEM UND KOORDINATEN	9
4.2	PARAMETER DER IMMISSIONSORTE UND EMITTENTEN	9
4.3	Maximaler Einwirkbereich des Schattenwurfs von WEA	10
5	ERGEBNISSE	11
5.1	ZEITDAUER DER BESCHATTUNG DER BETRACHTETEN IMMISSIONSORTE DURCH DIE WEA	11
5.1	.1 ZUSATZBELASTUNG	12
5.1	.2 Vorbelastung	13
5.1	.3 GESAMTBELASTUNG	15
5.2	SCHATTENFELD DER WEA	16
6	ABWEICHUNGEN	19
7	ZUSAMMENFASSUNG	20
8	LITERATUR	21
9	ANHÄNGE	22
9.1	Entfernungen der WEA zu den Immissionsorten	22
9.2		25
9.3		47

1 Einführung

1.1 Aufgabenstellung

Die WIND-consult GmbH wurde von der BWP BB Wind GmbH & Co.KG beauftragt, die Ermittlung des Schattenwurfs von Windenergieanlagen (WEA), nach den Vorgaben der WEA-Schattenwurf-Hinweise des LAI /1/, am Standort Böxlund durchzuführen.

Vom Auftrag abweichende bzw. weiterführende Maßnahmen und Leistungen wurden nicht durchgeführt.

1.2 Verwendete Normen und Richtlinien

Die Hauptmethodik der Berechnungen folgt den WEA-Schattenwurf-Hinweisen: Hinweise zur Ermittlung und Beurteilung der optischen Immissionen von Windenergieanlagen des Länderausschusses Immissionsschutz (LAI) /1/.

Der vorliegende Bericht entspricht einer akkreditierten Dienstleistung gemäß den Anforderungen der DIN 17025 /10/. Entsprechend dem Geltungsbereich des von der zuständigen Akkreditierungsstelle DAkkS ausgestellten Kompetenznachweises der WIND-consult GmbH (in Form der Akkreditierungsurkunde mit der Akkreditierungsnummer D-PL-11098-01-00) sind für die Ermittlung des Schattenwurfs von WEA im Rahmen einer akkreditierten Dienstleistung die WEA-Schattenwurf-Hinweise der LAI vom 13.03.2002 zu verwenden.

Die vorgenannten Hinweise wurden im Jahr 2019/2020 durch die LAI aktualisiert. Die Überarbeitung betraf redaktionelle Änderungen, die Aktualisierung normativer Verweise und die Festlegung auf das UTM-Koordinatensystem. Die eigentlichen Berechnungsvorschriften wurden bei der Überarbeitung durch die LAI nicht geändert.

Daher können die hier dargestellten Ergebnisse nach den WEA-Schattenwurf-Hinweisen des LAI aus dem Jahr 2002 /1/ weiterhin im Rahmen der Genehmigungsvoraussetzungen nach BImSchG herangezogen werden.

Die Abweichungen von Normen oder Richtlinien sind in Kapitel 6 erläutert.

2 Methode der Berechnung und Beurteilung

2.1 Mathematisch-physikalische Grundlagen zum Schattenwurf

Jeder undurchsichtige Körper erzeugt im Strahlengang einer Lichtquelle einen Schatten, dessen Konturen denen der äußeren Umrandung des Körpers entsprechen. Dabei existiert bei einer realen flächenhaften Lichtquelle keine scharfe Schattengrenze, sondern zwischen dem vollkommen abgeschatteten und begrenzten Raum (Kernschatten) und dem beleuchteten besteht ein Übergangsgebiet (Halbschatten), in dem jeweils nur ein Teil der Lichtquelle abgeschattet wird.

Die entscheidende Besonderheit bei dem Schattenwurf durch eine Windenergieanlage (WEA) ist der bei Wind auftretende schnelle Wechsel von Licht und Schatten durch die sich bewegenden Rotorblätter. Dieser Effekt bewirkt selbst in größeren Entfernungen von der WEA, d.h. weit außerhalb des Kernschattengebiets (ca. 200 bis 300 m) eine spürbare Beeinträchtigung der Umgebung. Als vorläufiger Anhaltswert für diesen **maximalen Einwirkbereich** wurde durch den Arbeitskreis Schattenwurf ein Abstand zur WEA vereinbart, bei dem **20% der Sonnenkreisfläche** durch die mittlere Rotorblatttiefe bedeckt wird /7/, /9/. Da die Blatttiefe nicht über das gesamte Rotorblatt konstant ist, sondern in Richtung Rotorblattspitze abnimmt, ist entsprechend /1/ ein rechteckiges Rotorblatt zu ermitteln, das bei der Berechnung zugrunde gelegt wird. Dabei ergibt sich die mittlere Blatttiefe nach Gleichung 2.1

In den folgenden Untersuchungen wird deshalb keine Unterscheidung zwischen Halb- und Kernschatten getroffen, da dies nach /1/ für die Belästigung nicht bedeutsam ist. Der statische Schatten des Turms oder des Rotors bei Windstille wirkt dabei genauso wenig belästigend wie bei jedem anderen vergleichbaren Bauwerk.

Die Einwirkung eines periodischen Schattenwurfs gilt als erheblich belästigend, wenn die astronomisch maximal mögliche Beschattungsdauer an einem Immissionsort mehr als **30 Stunden pro Kalenderjahr** und mehr als **30 Minuten pro Kalendertag** beträgt.

Die Berechnung der **astronomisch möglichen Beschattungsdauer** (Annahme: Durchgehender Sonnenschein von Sonnenaufgang (SA) bis Sonnenuntergang (SU), d. h. keine Berücksichtigung von Bewölkung und Lufttrübung) eines Immissionsortes durch die Rotorblätter einer WEA erfolgt auf der Grundlage allgemein bekannter sphärisch-trigonometrischer Beziehungen zum tages- und jahreszeitlichen Sonnenstand (DIN 5034/3/) und der Gesetze der ebenen Geometrie. Die WEA-Rotorfläche wird dabei als Kreisfläche senkrecht zur Verbindungsgeraden Immissionsort – WEA-Turm und damit senkrecht zur Sonnenscheinrichtung und der Immissionsort als ein Punkt in einer bestimmten vereinbarten Höhe über Grund (2,0 m) betrachtet. Die Beschattungsdauer an einem beliebigen Tag ist dann die Zeit, in der sich die Sonne vom Immissionsort aus gesehen hinter der Rotorfläche befindet. Sie wird aus dem momentanen Höhenwinkel und dem Azimutwinkel der Sonne für alle Tage eines vorher ermittelten maximalen Jahreszeitraums berechnet.

Eine entscheidende Ausgangsgröße ist dabei die scheinbare Niveauhöhe der Sonne H_{RP} innerhalb der Rotorkreisfläche bezüglich der Niveauhöhe H_{IP} des Immissionspunktes im horizontalen Abstand L_{RI} dieses Punktes von der Rotorfläche bei dem momentanen Höhenwinkel h_s der Sonne:

$$H_{RP} = H_{IP} + L_{RI} \cdot \tan h_s$$
 2.2

Als ein vorläufiger Richtwert wird bei den Schattenberechnungen eine minimale Sonnenhöhe von 3,0° festgelegt, ab der die Berechnungen schrittweise beginnen.

Eine weitere hier berechnete Größe ist die wahrscheinliche bzw. meteorologische Beschattungsdauer. Sie ergibt sich aus der astronomischen Beschattungsdauer und langjährig gemittelten, regionalen, monatlichen Klimadaten zur Sonnenscheindauer und Windrichtungsverteilung (/2/, /6/) sowie einem Ansatz von BEHR /4/ zur Ermittlung der wirksamen Rotorfläche. Die meteorologische Beschattungsdauer ist für die praktische Bewertung wichtig und liegt im Allgemeinen erheblich, insbesondere in den frühen Vormittags- oder späten Nachmittagsstunden bis zu einer Größenordnung unter der astronomischen Beschattungsdauer. Daher soll

nach /1/ die meteorologische Beschattungsdauer einen Wert von **8 Stunden pro Kalenderjahr** nicht überschreiten.

2.2 Methode der Prognoseunsicherheit

Zur Ermittlung bzw. Anwendung von Unsicherheiten werden nach /1/ keine Angaben gemacht. Das Berechnungsmodell nach /1/ basiert auf einer rein geometrischen Berechnung unter Ansatz eines Worst-Case-Szenarios.

Abschließend ist darauf zu verweisen, dass aufgrund notwendig vereinfachender physikalisch-mathematischer Annahmen und methodischer Vorgaben in /1/ Unsicherheiten der Berechnung z. B. bezüglich der tageszeitlichen Zuordnung von ca. 1,0 Minuten und der jährlichen astronomischen Beschattungsdauer von ca. 0,5 h/a auftreten können. Die Ermittlung zusätzlicher Beschattungen der Immissionsorte durch andere Hindernisse ist nicht Gegenstand der Berechnungen.

2.3 Tabellarische Darstellung der Ergebnisse

Die quantitativen Ergebnisse der schrittweisen Berechnung des Schattenverlaufs der WEA an den jeweiligen Immissionsorten werden in den Tabellen in Anhang 9.2 zusammenfassend dargestellt. Sie beinhalten neben den wichtigsten Eingangsgrößen und Parametern des Immissionsortes und der beschattenden WEA die jährliche astronomische Beschattungsdauer, die gesamte wahrscheinliche Beschattungsdauer eines Immissionsortes, die Anzahl der Beschattungstage und den jahres- und tageszeitlichen Beschattungszeitraum.

Der Kalender der Beschattungszeiten für die Immissionsorte im Einwirkbereich der zu beurteilenden WEA, an denen es zu einer Überschreitung der Richtwerte kommt, kann bei Bedarf angefordert werden. Er beinhaltet im Tabellenkopf die zusammengefassten Ergebniswerte und darunter folgend für jeden Tag, an dem Beschattung des jeweiligen Immissionsortes auftritt, die Uhrzeit für Beginn und Ende der Beschattung (die angegebenen Zeiten für den Beginn sind die Zeiten zu der die jeweilige WEA den Immissionsort noch nicht beschattet, die angegebenen Zeiten für das Ende sind die Zeiten zu der die jeweilige WEA den Immissionsort nicht mehr beschattet), die tägliche astronomische und wahrscheinliche Beschattungsdauer und schließlich die beschattenden WEA an dem Tag. Die Beschattungskalender erlauben u.a. detaillierte Entscheidungen zu den notwendigen Abschaltzeiten ausgewählter WEA an den jeweiligen Schattentagen.

Sämtliche Berechnungen und graphische Darstellungen erfolgen mit Hilfe eines von der WIND-consult GmbH entwickelten internen Programms SHADOW /11/. Dabei werden Eigenabschirmungen von Gebäuden nicht betrachtet (sogenannter "Gewächshaus-Modus").

Als Richtwert für die zulässige **astronomische Beschattungsdauer** wurde ein Wert von maximal 30 Stunden pro Jahr und maximal 30 Minuten pro Tag als Summe aus allen einen Immissionsort beschattenden WEA eines Windparks vereinbart /1/.

2.4 Graphische Darstellung des ganzjährigen Schattenverlaufs von WEA

Für eine umfassende Bewertung des Schattenwurfs von WEA an deren Standort ist eine flächenhafte Darstellung der Verteilung der jährlichen astronomischen Beschattungsdauer in der gesamten Umgebung der WEA sinnvoll. Das gilt insbesondere für Windparks. Eine derartige Darstellung als Schattenfeld gibt einerseits einen schnellen Überblick über Größe und Aussehen der Fläche, die wesentlich von Schattenwurf der WEA betroffen ist. Andererseits erlaubt sie eine erste Beurteilung weiterer oder künftiger Immissionsorte hinsichtlich einer möglichen Beschattung durch die WEA.

Zu diesem Zweck werden in einer hinreichend großen Umgebung des Windparks die Stundensummen der jährlichen astronomischen Beschattungsdauer durch die Gesamtheit aller WEA in geeigneten Schrittweiten rasterförmig ermittelt und diese Werte anschließend in einem Feld den jeweiligen geometrischen Orten zugeordnet. Für eine exakte Ermittlung dieses Schattenfeldes wird eine topologische Karte des Gebietes mit

digitalisierter Höhenverteilung verwendet. Durch eine zweckmäßige Klassierung der Werte der jährlichen Beschattungsdauer und deren Markierung erhält man Flächen gleicher Grenzbereiche der Beschattungsdauer durch die Gesamtheit aller WEA. Ein so berechnetes Schattenfeld zeigen Abbildung 5.1 und Abbildung 5.2 Die Rastergröße beträgt hierbei 40 m.

Mögliche Immissionsorte, die innerhalb des ersten Schattenbereichs (< 3,0 h/a) liegen, werden überhaupt nicht oder extrem geringfügig beschattet, so dass sich eine detaillierte Schattenanalyse (Schattengutachten) für solche Orte erübrigt. Immissionsorte, die sich innerhalb des zweiten Schattenbereichs (3,0 h/a bis 30,0 h/a) befinden, werden grundsätzlich durch eine oder mehrere WEA beschattet, jedoch unterhalb des kritischen Richtwerts von 30,0 h/a. Eine detaillierte Schattenanalyse empfiehlt sich insbesondere dann, wenn sich solche Immissionsorte nahe am dritten Schattenbereich (> 30,0 h/a) befinden. Immissionsorte im dritten Schattenbereich (> 30,0 h/a) werden so stark beschattet, dass auf der Grundlage einer notwendigen detaillierten Schattenanalyse Maßnahmen zur Reduzierung der Beschattungsdauer getroffen werden müssen.

Eine derartige graphische Darstellung erlaubt auch eine grobe tages- und jahreszeitliche Zuordnung der Werte: Punkte links (westlich) der jeweiligen WEA werden vormittags und solche rechts (östlich) davon nachmittags beschattet. Punkte oberhalb (nördlich) der jeweiligen WEA werden im Winterhalbjahr und solche unterhalb (südlich) davon im Sommerhalbjahr beschattet.

Grundsätzlich ersetzt die Darstellung des Schattenfeldes jedoch keine detaillierte Schattenanalyse an einem bestimmten Immissionsort. Es ist keine genaue zeitliche Ermittlung der Beschattungsdauer möglich, und aufgrund der Unsicherheiten allein von Rasterung und Orographie liegt die Gesamtunsicherheit insbesondere in der Nähe des dritten Schattenbereichs (> 30,0 h/a) bei ca. 5,0 h/a bzw. 5 min/d.

3 Standort- und Projektbeschreibung

Der zu untersuchende Windpark Böxlund befindet sich ca. 2,5 km nordwestlich des Ortes Böxlund. Südlich der geplanten WEA befindet sich in 3 km Entfernung die Ortschaft Weesby. Die entsprechenden Gemeinden liegen auf dem Gebiet des Landkreises Schleswig-Flensburg.

Das Gelände am Standort des Windparks ist weitgehend eben und offen. Die Höhe über Normalnull (Höhe ü. NN) liegt im Bereich der WEA-Standorte bei etwa 15 m. Immissionsrelevante Hindernisse sind, bis auf vereinzelte Baumgruppen innerhalb der Freiflächen und Baumreihen im Bereich der Ortschaften sowie im Verlauf umliegender Straßen, nicht vorhanden.

Die durch Schattenwurf möglicherweise betroffenen Immissionsorte (IO) wurden im Rahmen einer Standortbesichtigung ermittelt.

Die betrachteten Immissionsorte sind Abbildung 3.1 und Tabelle 4.1 zu entnehmen.

Nach den Informationen der Genehmigungsbehörde sind 24 WEA verschiedenen Typs als Vorbelastung zu berücksichtigen.

Bei den zu beurteilenden drei WEA (ZB01 bis ZB03) handelt es sich um zwei WEA des Typs ENERCON E-160 EP5 E3 / 5560 kW mit einer Nabenhöhe von 120 m und eine WEA des Typs ENERCON E-138 EP3 E2 / 4200 kW mit TES mit Nabenhöhe von 111 m.

Die Parameter und Koordinaten der betreffenden WEA sind Tabelle 4.2 zu entnehmen.

Abbildung 3.1: Lageplan Böxlund (Quelle: © OpenStreetMap-Mitwirkende)

4 Eingangsdaten für die Berechnung

4.1 Koordinatensystem und Koordinaten

Für die Berechnungen wurden, abweichend zu /1/, Koordinaten im Bezugssystem ETRS 89 mit UTM-Abbildung, 6°-Zonensystem, Vorangestellte Zone 32 verwendet (vgl. auch Kapitel 6).

Die Bezugshöhe an den Immissionsorten beträgt unter Berücksichtigung der vorhandenen Bebauung jeweils 2 m über Grund.

4.2 Parameter der Immissionsorte und Emittenten

Die Immissionsorte werden als Punktrezeptoren mit einer Neigung von 0° berücksichtigt. Die Bezugshöhe beträgt jeweils 2 m über Grund. In Tabelle 4.1 sind die Immissionsortsnummern, die Koordinaten und die absolute Höhe dargestellt.

Tabelle 4.1: Standortparameter und Koordinaten der Immissionsorte

Parameter der Immissionsorte				
Bezeichnung	Nummer	x-Koordinate in Meter	y-Koordinate in Meter	z-Koordinate in Meter
Erlenweg 4, Böxlund	IO-01	32.512.084	6.078.670	24,8
Erlenweg 5, Böxlund	IO-02	32.511.990	6.078.515	24,0
Grenzauweg 3, Böxlund	IO-03	32.511.291	6.079.064	22,0
Grenzstraße 1, Böxlund	IO-04	32.510.984	6.078.916	20,3
Weesbydamm 14, Weesby	IO-05	32.510.226	6.078.926	21,4
Kjerweg 4, Weesby	IO-06	32.510.018	6.078.918	21,7
Kjerweg 3, Weesby	IO-07	32.509.917	6.078.949	22,0
Kjerweg 1, Weesby	IO-08	32.509.890	6.078.996	22,0
Bögelhus 2, Weesby	IO-09	32.509.362	6.079.254	20,0
Bögelhus 2a, Weesby	IO-10	32.509.354	6.079.278	20,0
Bögelhus 4, Weesby	IO-11	32.509.431	6.079.917	19,3
Kjerweg 2, Weesby	IO-12	32.510.126	6.078.810	22,0
Grenzauweg 4, Böxlund	IO-13	32.511.314	6.078.970	22,0
Grenzauweg 2, Böxlund	IO-14	32.511.297	6.078.865	22,0
Bögelhus 1, Weesby	IO-15	32.509.313	6.079.300	20,0
Bögelhus 3, Weesby	IO-16	32.509.137	6.080.535	20,0
Bögelhus 12, Weesby	IO-17	32.509.155	6.080.618	19,3
Bögelhus 10, Weesby	IO-18	32.509.208	6.080.554	20,3
Bögelhus 8, Weesby	IO-19	32.509.338	6.080.334	18,0
Bögelhus 6, Weesby	IO-20	32.509.394	6.080.108	20,0
Betonstraße 2, Weesby	IO-21	32.509.213	6.079.268	19,3

Tabelle 4.2: Standortparameter und Koordinaten der WEA

Parameter der WEA			Naben- höhe	Rotor- durch- messer	Mittlere Blatt- tiefe	x-Koor- dinate in	y-Koor- dinate in	z-Koor- dinate in	Maximaler Schatten- einwirk- bereich
Bezeichnung	Nummer	Anlagentyp	in m	in m	in m	Meter	Meter	Meter	in m
ZB01	A1	ENERCON E-160 EP5 E3	99,0	160,0	2,570	32.509.965	6.079.600	16,0	1.750
ZB02	A2	ENERCON E-160 EP5 E3	99,0	160,0	2,570	32.510.417	6.079.349	18,0	1.750
ZB03	A3	ENERCON E-138 EP3 E2	96,0	138,0	2,477	32.511.520	6.079.549	20,0	1.687
VB01	A4	ENERCON E-101	99	101,0	3,252	32.508.505	6.079.136	14,0	2.215
VB02	A5	ENERCON E-101	99	101,0	3,252	32.508.551	6.078.885	14,9	2.215
VB03	A6	Senvion 3.2M114	93	114,0	2,574	32.509.612	6.078.330	18,0	1.753
VB04	A7	Senvion 3.2M114	93	114,0	2,574	32.509.812	6.077.810	19,1	1.753
VB05	A8	Senvion 3.2M114	93	114,0	2,574	32.510.806	6.079.514	18,0	1.753
VB06	A9	Senvion 3.2M114	93	114,0	2,574	32.511.144	6.079.614	19,4	1.753
VB07	A10	Senvion 3.2M114	93	114,0	2,574	32.511.858	6.079.246	20,0	1.753
VB08	A11	Senvion 3.2M114	93	114,0	2,574	32.512.196	6.079.176	21,8	1.753
VB09	A12	Senvion 3.2M114	93	114,0	2,574	32.509.924	6.080.069	16,0	1.753
VB10	A13	Senvion 3.2M114	93	114,0	2,574	32.510.243	6.079.899	18,0	1.753
VB11	A14	Senvion 3.2M114	93	114,0	2,574	32.510.596	6.079.808	18,0	1.753
VB12	A15	Senvion 3.2M114	123	114,0	2,574	32.512.631	6.079.003	21,0	1.753
VB13	A16	Senvion 3.2M114	123	114,0	2,574	32.512.736	6.078.683	20,0	1.753
VB14	A17	Senvion 3.2M114	123	114,0	2,574	32.512.978	6.078.401	20,0	1.753
VB15	A18	Senvion 3.2M114	123	114,0	2,574	32.513.084	6.078.045	22,0	1.753
VB16	A19	Senvion MM92	100	92,0	2,330	32.513.153	6.078.872	22,0	1.587
VB17	A20	Senvion 3.2M114	123	114,0	2,574	32.513.375	6.077.826	23,3	1.753
VB18	A21	Vestas V112-3.0 MW	119	112,0	2,515	32.513.481	6.078.361	23,0	1.713
VB19	A22	Senvion 3.2M114	123	114,0	2,574	32.513.587	6.078.671	22,0	1.753
VB20	A23	Senvion 3.2M114	123	114,0	2,574	32.513.796	6.078.158	24,0	1.753
VB21	A24	Senvion 3.2M114	123	114,0	2,574	32.513.934	6.077.779	22,6	1.753
VB22	A25	Vestas V112-3.0 MW	119	112,0	2,515	32.513.971	6.078.453	23,8	1.713
VB23	A26	Senvion 3.6 M114	119	114,0	2,574	32.514.185	6.078.032	24,0	1.753
VB24	A27	Senvion 3.2M114	123	114,0	2,574	32.514.333	6.078.361	22,7	1.753

4.3 Maximaler Einwirkbereich des Schattenwurfs von WEA

Mit den Ermittlungen des **maximalen Einwirkbereich des Schattenwurfs von WEA** /7/, /8/, /9/ (vgl. Kapitel 1.2 und Tabelle 4.2) ist bereits aus den Entfernungsabständen der WEA zu den Immissionsorten vorab eine Auswahl der zu betrachtenden WEA und Immissionsorte gegeben. Dazu sind in Anhang 9.1 die Entfernungen der WEA zu den Immissionsorten innerhalb des Einwirkbereichs des Schattenwurfs der WEA dargestellt (schwarze Zahlen). Alle Entfernungen der nicht im Einwirkbereich der jeweiligen WEA befindlichen Immissionsorte werden als graue Zahlen dargestellt. Dabei wurde die azimutale Lage der WEA zu den Immissionsorten hier noch nicht berücksichtigt.

5 Ergebnisse

5.1 Zeitdauer der Beschattung der betrachteten Immissionsorte durch die WEA

Die Hauptergebnisse (astronomische jährliche Beschattung, max. astronomische tägliche Beschattung, beschattende WEA) der Berechnungen sind für die WEA der Zusatzbelastung in Kapitel 5.1.1, für die WEA der Vorbelastung in Kapitel 5.1.2 und für die WEA der Gesamtbelastung in Kapitel 5.1.3 für alle Immissionsorte, die durch die jeweiligen WEA beschattet werden, dargestellt.

Für die Immissionsorte, an denen Beschattung durch die zu beurteilenden WEA auftritt, sind in den Tabellen in der Anlage 9.2 die ausführlichen Ergebnisse dargestellt. Darin sind im Kopf des Datenblatts die geographischen Daten des Standortes und die Koordinaten des jeweiligen Immissionsortes enthalten. In der darunter befindlichen Tabelle sind in den Spalten 3 bis 19 für jede den Immissionsort beschattende WEA neben den Eingangsgrößen zusätzlich die Entfernung vom Immissionsort und der Azimutwinkel der WEA angegeben.

Als wichtigste Ergebnisse der Schattenberechnung enthalten die Spalten 3 bis 19 für jede beschattende WEA die jährliche astronomische Beschattungsdauer in h/a, die maximale tägliche Beschattungsdauer in min/d, die Anzahl der Beschattungstage, den jahreszeitlichen Beschattungszeitraum und die Tageszeit der Beschattung an einem Tag in der Mitte der jeweiligen Beschattungsperiode. In der letzten Spalte (20, Gesamt) befinden sich für den jeweiligen Immissionsort die entsprechenden resultierenden Werte aus allen WEA. Dabei werden Überschneidungen der Beschattungen durch mehrere WEA an einem einzelnen Tag berücksichtigt und z. B. bezüglich der maximalen täglichen Beschattungsdauer diese nicht addiert. Das gilt auch für die Anzahl der Beschattungstage und die Beschattungsdauer. Als weiterer Ergebniswert ist die gesamte wahrscheinliche Beschattungsdauer (siehe Kapitel 2.1) angegeben.

5.1.1 Zusatzbelastung

 Tabelle 5.1: Hauptergebnisse der Beschattung der IO, die sich im Einwirkbereich der WEA der Zusatzbelastung befinden

Lfd-Nr.	Adresse	astr. Beschattung in h/a	max. astr. Beschattung in min/d	Beschattende WEA
1	IO-03 Grenzauweg 3, Böxlund	32,4	50	ZB01, ZB02
2	IO-04 Grenzstraße 1, Böxlund	41,9	48	ZB01, ZB02
3	IO-05 Weesbydamm 14, Weesby	10,2	22	ZB03
4	IO-06 Kjerweg 4, Weesby	5,6	18	ZB03
5	IO-07 Kjerweg 3, Weesby	7,0	18	ZB02
6	IO-08 Kjerweg 1, Weesby	35,9	46	ZB02
7	IO-09 Bögelhus 2, Weesby	75,2	58	ZB01, ZB02
8	IO-10 Bögelhus 2a, Weesby	85,1	58	ZB01, ZB02
9	IO-11 Bögelhus 4, Weesby	55,8	58	ZB01, ZB02
10	IO-12 Kjerweg 2, Weesby	8,7	20	ZB03
11	IO-13 Grenzauweg 4, Böxlund	30,2	42	ZB01, ZB02
12	IO-14 Grenzauweg 2, Böxlund	43,6	38	ZB01, ZB02
13	IO-15 Bögelhus 1, Weesby	91,6	54	ZB01, ZB02
14	IO-16 Bögelhus 3, Weesby	26,6	42	ZB01, ZB02
15	IO-17 Bögelhus 12, Weesby	25,3	30	ZB01
	bogenius 12, weesby			
Lfd-Nr.	Adresse	astr. Beschattung in h/a	max. astr. Beschattung in min/d	Beschattende WEA
16	IO-18	36,0	44	ZB01, ZB02
17	Bögelhus 10, Weesby IO-19	50,2	60	ZB01, ZB02
18	Bögelhus 8, Weesby IO-20	48,7	64	ZB01, ZB02
19	Bögelhus 6, Weesby IO-21 Betonstraße 2, Weesby	78,1	48	ZB01, ZB02

5.1.2 Vorbelastung

 Tabelle 5.2: Hauptergebnisse der Beschattung der IO, die sich im Einwirkbereich der WEA der Vorbelastung befinden

Erl 2 IO Erl	Adresse 0-01 rlenweg 4, Böxlund	Beschattung in h/a 86,0	Beschattung in min/d	Beschattende WEA
1 IO- Erl 2 IO- Erl	_	in h/a	in min/d	
2 IO-	_			
2 IO-	_	86,0		
2 IO Erl	_	00,0	60	VB05, VB12, VB13, VB14,
2 IO- Eri				VB15, VB16, VB17, VB18,
Erl				VB19
Erl)-02	66,0	52	VB05, VB13, VB14, VB15,
	rlenweg 5, Böxlund	55,5		VB16, VB17, VB18, VB19
3 10)-03	103,0	48	VB07, VB08, VB09, VB10,
	renzauweg 3, Böxlund	100,0		VB12, VB13
)-04	39,3	30	VB03, VB04, VB07, VB08,
	renzstraße 1, Böxlund	,-		VB12
)-05	35,1	32	VB01, VB02, VB03, VB06,
	eesbydamm 14, Weesby			VB07
	0-06	68,2	40	VB01, VB02, VB03, VB05,
	erweg 4, Weesby	,		VB06
	0-07	65,1	40	VB01, VB02, VB03, VB05,
Kje	erweg 3, Weesby	,		VB06
8 IÓ	0-08	56,0	32	VB01, VB02, VB03, VB05,
Kje	erweg 1, Weesby	•		VB06
9 IÓ)-09	40,1	26	VB01, VB02, VB05, VB10,
Bö	ögelhus 2, Weesby			VB11
10 IO)-10	44,6	28	VB01, VB02, VB05, VB10,
Bö	ögelhus 2a, Weesby			VB11
11 IO)-11	133,4	52	VB01, VB02, VB05, VB06,
Bö	ögelhus 4, Weesby			VB09, VB10, VB11
12 IO)-12	39,8	40	VB01, VB02, VB03
	erweg 2, Weesby			,
)-13	85,7	56	VB07, VB08, VB10, VB12,
Gr	renzauweg 4, Böxlund			VB13
_)-14	51,0	32	VB07, VB08, VB12, VB13,
	renzauweg 2, Böxlund			VB14
)-15	54,4	28	VB01, VB02, VB05, VB10,
Bö	ögelhus 1, Weesby			VB11

Lfd-Nr.	Adresse	astr. Beschattung in h/a	max. astr. Beschattung in min/d	Beschattende WEA
16	IO-16 Bögelhus 3, Weesby	15,6	40	VB09, VB10, VB11
17	IO-17 Bögelhus 12, Weesby	17,5	42	VB09, VB10, VB11
18	IO-18 Bögelhus 10, Weesby	19,5	44	VB09, VB10, VB11
19	IO-19 Bögelhus 8, Weesby	30,6	42	VB05, VB09, VB10, VB11
20	IO-20 Bögelhus 6, Weesby	71,3	48	VB01, VB05, VB09, VB10, VB11
21	IO-21 Betonstraße 2, Weesby	62,1	32	VB01, VB02, VB03, VB05, VB10, VB11

5.1.3 Gesamtbelastung

 Tabelle 5.3: Hauptergebnisse der Beschattung der IO, die sich im Einwirkbereich der WEA der Gesamtbelastung befinden

		astr.	max. astr.	
Lfd-Nr.	Adresse	Beschattung	Beschattung	Beschattende WEA
		in h/a	in min/d	
1	IO-01	86,0	60	VB05, VB12, VB13, VB14,
	Erlenweg 4, Böxlund			VB15, VB16, VB17, VB18,
	_			VB19
2	IO-02	66,0	52	VB05, VB13, VB14, VB15,
	Erlenweg 5, Böxlund			VB16, VB17, VB18, VB19
3	IO-03	135,4	88	ZB01, ZB02, VB07, VB08,
	Grenzauweg 3, Böxlund			VB09, VB10, VB12, VB13
4	IO-04	81,3	48	ZB01, ZB02, VB03, VB04,
	Grenzstraße 1, Böxlund			VB07, VB08, VB12
5	IO-05	45,3	32	ZB03, VB01, VB02, VB03,
	Weesbydamm 14, Weesby			VB06, VB07
6	IO-06	73,8	40	ZB03, VB01, VB02, VB03,
	Kjerweg 4, Weesby			VB05, VB06
7	IO-07	65,7	40	ZB02, VB01, VB02, VB03,
	Kjerweg 3, Weesby			VB05, VB06
8	IO-08	68,6	46	ZB02, VB01, VB02, VB03,
	Kjerweg 1, Weesby			VB05, VB06
9	IO-09	106,0	62	ZB01, ZB02, VB01, VB02,
	Bögelhus 2, Weesby			VB05, VB10, VB11
10	IO-10	119,2	68	ZB01, ZB02, VB01, VB02,
	Bögelhus 2a, Weesby			VB05, VB10, VB11
	IO-11	189,2	64	ZB01, ZB02, VB01, VB02,
	Bögelhus 4, Weesby			VB05, VB06, VB09, VB10,
				VB11
12	IO-12	48,4	40	ZB03, VB01, VB02, VB03
	Kjerweg 2, Weesby			
13	IO-13	115,9	60	ZB01, ZB02, VB07, VB08,
	Grenzauweg 4, Böxlund			VB10, VB12, VB13
14	IO-14	94,6	58	ZB01, ZB02, VB07, VB08,
	Grenzauweg 2, Böxlund			VB12, VB13, VB14
-	IO-15	137,1	74	ZB01, ZB02, VB01, VB02,
	Bögelhus 1, Weesby			VB05, VB10, VB11

Lfd-Nr.	Adresse	astr. Beschattung in h/a	max. astr. Beschattung in min/d	Beschattende WEA
16	IO-16 Bögelhus 3, Weesby	42,2	42	ZB01, ZB02, VB09, VB10, VB11
17	IO-17 Bögelhus 12, Weesby	42,8	42	ZB01, VB09, VB10, VB11
18	IO-18 Bögelhus 10, Weesby	55,6	44	ZB01, ZB02, VB09, VB10, VB11
19	IO-19 Bögelhus 8, Weesby	80,8	60	ZB01, ZB02, VB05, VB09, VB10, VB11
20	IO-20 Bögelhus 6, Weesby	120,0	64	ZB01, ZB02, VB01, VB05, VB09, VB10, VB11
21	IO-21 Betonstraße 2, Weesby	134,4	66	ZB01, ZB02, VB01, VB02, VB03, VB05, VB10, VB11

5.2 Schattenfeld der WEA

In den Abbildung 5.1 und Abbildung 5.2 ist das in Abschnitt 2.4 erläuterte jährliche Schattenfeld und das tägliche Schattenfeld durch die WEA der Zusatzbelastung am Standort Böxlund dargestellt. Die Schattenfelder beziehen sich in diesem Fall auf eine durch orografische Daten ermittelte Niveauhöhe in der Umgebung der WEA.

Die Abbildungen lassen erkennen, dass der kritische Bereich für Immissionsorte mit einer jährlichen astronomischen Beschattungsdauer über 30,0 h/a innerhalb einer Fläche von ca. 3,9 x 2,3 km und der Bereich von einer maximalen täglichen Beschattung von über 30 min/d innerhalb einer Fläche von 4,4 km x 2,6 km liegt.

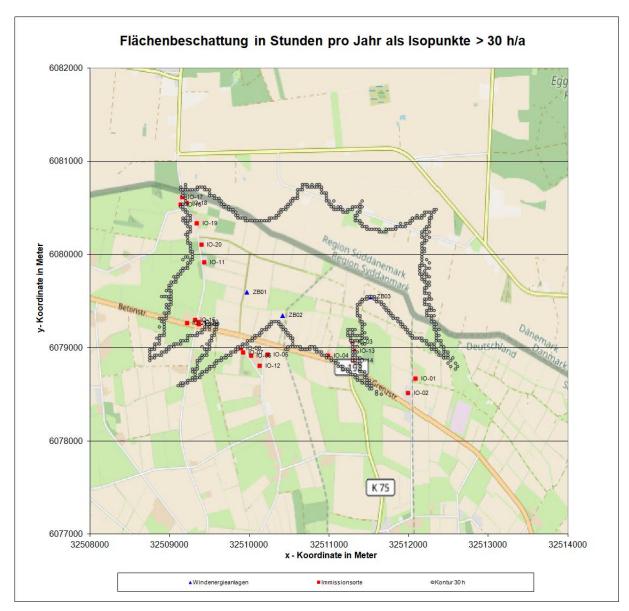


Abbildung 5.1: Schattenfeld der astronomischen, jährlichen Beschattung durch WEA der Zusatzbelastung

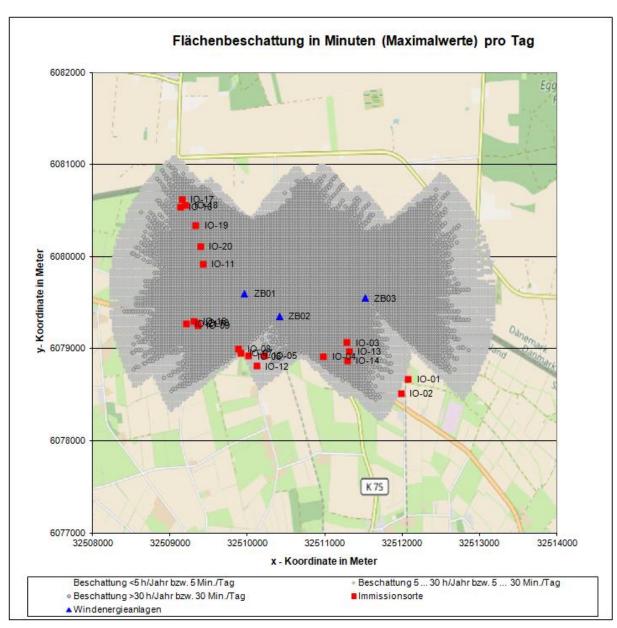


Abbildung 5.2: Schattenfeld der astronomischen, täglichen Beschattung durch WEA der Zusatzbelastung

6 Abweichungen

Die Ermittlung des Schattenwurfs von WEA mit folgender Abweichung:

Abweichend zu /1/ wurden für die Schattenwurfberechnung UTM-Koordinaten anstelle von Gauß-Krüger-Koordinaten verwendet. Dies war vor allem dadurch begründet, dass sowohl die Koordinaten der Vorbelastung als auch die der Zusatzbelastung vom Auftraggeber bereits im UTM-Koordinatenformat übergeben wurden. Die Verwendung von UTM-Koordinaten anstelle von Gauß-Krüger-Koordinaten hat keinen Einfluss auf das Berechnungsergebnis.

7 Zusammenfassung

Für die geplanten WEA am Standort Böxlund wurden in Abstimmung mit dem Auftraggeber bezüglich Parameter und Koordinaten der WEA die Beschattung von 21 möglicherweise betroffenen Immissionsorten untersucht und der jahres- und tageszeitliche Beschattungszeitraum, die aufsummierte und maximale tägliche astronomische Beschattungsdauer sowie die mittlere wahrscheinliche, meteorologisch bedingte Beschattungsdauer entsprechend Windparkkonfiguration ermittelt.

Die astronomische Gesamtbeschattungsdauer der Immissionsorte durch alle WEA liegt zwischen ca. 42,2 h/a (IO-16) und ca. 189,2 h/a (IO-11) und die wahrscheinliche bzw. meteorologische Gesamtbeschattungsdauer liegt zwischen ca. 3,0 h/a (IO-05) und ca. 26,4 h/a (IO-11).

Die astronomische maximale tägliche Beschattungsdauer liegt zwischen ca. 32 Min/d (IO-05) und ca. 88 Min/d (IO-03).

Der Richtwert für die maximale jährliche astronomische Gesamtbeschattung von 30 h/a (WEA-Schattenwurf-Hinweise /1/) wird an mehreren Immissionsorten im Einwirkbereich der WEA der Zusatzbelastung überschritten.

Der Richtwert für die maximale tägliche astronomische Gesamtbeschattung von 30 min/d (WEA-Schattenwurf-Hinweise /1/) wird an mehreren Immissionsorten im Einwirkbereich der WEA der Zusatzbelastung überschritten.

Aufgrund der vorgenannten, prognostizierten Überschreitungen von mehr als 30 h/a, sind technisch Maßnahmen zu ergreifen, die die wahrscheinliche bzw. meteorologische Beschattungsdauer auf höchstens 8 h/a und 30 min/d begrenzt. Dabei ist sicherzustellen, dass die maximal zulässigen Beschattungszeiten an allen relevanten Immissionsorten eingehalten bzw. unterschritten werden.

Die Einhaltung bzw. eine Unterschreitung der Richtwerte wäre grundsätzlich durch die Installation einer geeigneten Abschaltvorrichtung an der jeweiligen WEA möglich. Die dazu notwendigen astronomisch bedingten Abschaltzeiten können dem Kalender der Beschattungszeiten der relevanten Immissionsorte, nach Auswahl der abzuschaltenden WEA, entnommen werden. Dieser wird aus Platzgründen hier nicht aufgeführt, kann aber bei Bedarf nachgereicht werden.

Die Aussagen gelten für die dem Modell zugrundeliegenden Annahmen und Parameter. Die Werte der wahrscheinlichen Beschattungsdauer basieren auf den langjährigen monatlichen Klimadaten von Hamburg (Solar und Wind) und sind als statistische Größen zu bewerten.

Die vorliegende Untersuchung wurde von der WIND-consult GmbH gemäß dem Stand von Wissenschaft und Technik nach bestem Wissen und Gewissen unparteiisch durchgeführt.

8 Literatur

- /1/ LÄNDERAUSSCHUSS FÜR IMMISSIONSSCHUTZ: HINWEISE ZUR ERMITTLUNG UND BEURTEILUNG DER OPTISCHEN IMMISSIONEN VON WINDENERGIEANLAGEN. WEA-SCHATTENWURF-HINWEISE. STAND: 13.03.2002.
- /2/ METEOROLOGISCHER DIENST DER DDR (MD): KLIMADATEN DER DDR: REIHE B: STRAHLUNG UND BEWÖLKUNG. BD. 3. POTSDAM (D): MD, 1981/1983
- /3/ DEUTSCHES INSTITUT FÜR NORMUNG E.V. (DIN): TAGESLICHT IN INNENRÄUMEN. DIN 5034 FEBRUAR 1985. BERLIN (D): BEUTH-VERLAG GMBH, 1985
- /4/ BEHR, H. D.: LICHT UND SCHATTEN. IN: WIND-KRAFT JOURNAL AUSGABE 3/92 S. 7 10. BREKENDORF (D): VERLAG NATÜRLICHE ENERGIE GREVENSBERG, 1992
- /5/ KASTEN, F.: ERGEBNISSE VON STRAHLUNGSMESSUNGEN IN DER BUNDESREPUBLIK DEUTSCHLAND SOWIE VON SPEZIELLEN MEßREIHEN AM METEOROLOGISCHEN OBSERVATORIUM HAMBURG. DEUTSCHER WETTERDIENST, METEOROLOGISCHES OBSERVATORIUM HAMBURG: HAMBURG 1991
- /6/ DEUTSCHES INSTITUT FÜR NORMUNG E.V. (DIN): METEOROLOGISCHE DATEN ZUR BERECHNUNG DES ENERGIEVERBRAUCHES VON HEIZ- UND RAUMLUFTTECHNISCHEN ANLAGEN. DIN 4710 NOVEMBER 1992. BERLIN (D): BEUTH-VERLAG GMBH, 1992
- /7/ STAATLICHES UMWELTAMT SCHLESWIG: Beratung des Arbeitskreises Schattenwurf: Gutachten über den Schattenwurf von Windenergieanlagen. Beratung am 04.09.98 im Staatlichen Umweltamt Schleswig. Arbeitsmaterial unveröffentlicht. Schleswig (D), 1998
- /8/ OSTEN, T., PAHLKE, T.: SCHATTENWURF VON WINDENERGIEANLAGEN: WIRD DIE GERÄUSCH-ABSTRAHLUNG DER MW-ANLAGEN IN DEN SCHATTEN GESTELLT ?. IN DEWI-MAGAZIN Nr. 13, AUGUST 1998, S.6 12. WILHELMSHAVEN (D): DEUTSCHES WINDENERGIEINSTITUT, 1998
- /9/ MINISTERIUM FÜR BAU, LANDESENTWICKLUNG UND UMWELT MECKLENBURG-VORPOMMERN: PLANUNG UND GENEHMIGUNG VON WINDENERGIEANLAGEN. ERLAß VOM 2. NOVEMBER 1998 VIII 200/410-510.18.9. SCHWERIN (D): AMTSBLATT M-V, 1998
- /10/ INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC): GENERAL REQUIREMENTS FOR THE COMPETENCE OF TESTING AND CALIBRATION LABORATORIES, ISO/IEC 17025:2017-11:2017, GENEVA (CH): IEC, 2017
- /11/ WIND-CONSULT GMBH (WICO): PROGRAMMSYSTEM SHADOW FÜR WINDOWS ZUR RECHNERGESTÜTZTEN SCHATTENWURFBERECHNUNG. BARGESHAGEN (D): WICO 2008
- /12/ WIND-CONSULT GMBH (WICO): QMP 12: ERMITTLUNG DES SCHATTENWURFS VON WEA AUF FLÄCHEN. QM-PRÜFANWEISUNG UNVERÖFFENTLICHT. BARGESHAGEN (D), AKT. FASSUNG

9 Anhänge

9.1 Entfernungen der WEA zu den Immissionsorten

Tabelle 9.1: Entfernungen der WEA zu den Immissionsorten

WEA	10	I1 IO-01 Erlenweg 4, Böxlund	I2 IO-02 Erlenweg 5, Böxlund	I3 IO-03 Grenzauwe g 3, Böxlund	I4 IO-04 Grenzstraße 1, Böxlund	I5 IO-05 Weesbyda mm 14, Weesby	I6 IO-06 Kjerweg 4, Weesby	I7 IO-07 Kjerweg 3, Weesby	I8 IO-08 Kjerweg 1, Weesby	I9 IO-09 Bögelhus 2, Weesby	I10 IO-10 Bögelhus 2a, Weesby
ZB01 ENERCON E E3 ZB02	-160 EP5	2314,1	2297,4	1430,2	1227,3	722,8	684,1	652,8	608,6	695,2	690,7
ENERCON E E3 ZB03		1800,0	1780,4	919,3	713,4	464,1	587,3	640,3	634,3	1059,3	1065,4
ENERCON E E2	-138 EP3	1044,4	1135,8	536,3	829,4	1436,2	1629,2	1711,6	1721,3	2178,1	2182,9
VB01 ENERCON E	-101	3609,2	3539,9	2786,9	2488,7	1733,8	1528,6	1424,3	1392,1	865,1	860,8
VB02 ENERCON E VB03	-101	3539,5	3458,8	2745,8	2433,2	1675,5	1467,4	1367,5	1343,6	891,0	894,0
Senvion 3.2N VB04	1114	2495,3	2385,2	1832,4	1491,9	855,7	714,5	690,1	721,7	957,2	982,5
Senvion 3.2N VB05	1114	2429,3	2289,3	1939,1	1611,5	1190,3	1127,0	1143,8	1188,6	1512,5	1537,8
Senvion 3.2N VB06	1114	1531,5	1549,1	661,6	623,9	825,9	988,0	1053,3	1052,3	1467,2	1471,1
Senvion 3.2N VB07	1114	1332,2	1386,9	569,3	716,1	1147,2	1323,7	1395,6	1398,0	1818,0	1821,3
Senvion 3.2N VB08	1114	618,8	742,8	595,5	934,2	1663,1	1869,0	1963,6	1983,8	2496,0	2504,2
Senvion 3.2N VB09	1114	518,2	692,4	911,9	1239,6	1985,8	2193,2	2290,3	2313,0	2835,1	2843,8
Senvion 3.2N VB10	1114	2573,5	2585,2	1696,7	1566,2	1182,2	1154,8	1120,0	1073,5	990,0	975,0
Senvion 3.2M VB11	1114	2213,5	2228,8	1340,0	1231,0	973,1	1006,5	1004,4	969,5	1091,9	1084,4
Senvion 3.2M VB12	1114	1873,3	1901,3	1018,1	972,7	956,5	1061,2	1095,0	1076,0	1352,7	1350,4
Senvion 3.2N VB13	1114	640,4	805,6	1341,4	1649,3	2406,2	2614,4	2714,5	2741,0	3278,6	3288,5
Senvion 3.2N VB14	1114	652,1	764,7	1494,4	1767,4	2521,7	2728,1	2831,5	2863,2	3422,0	3433,9
Senvion 3.2N VB15	1114	933,6	994,6	1812,6	2059,4	2801,6	3004,8	3109,7	3144,8	3715,2	3728,6
Senvion 3.2N VB16	1114	1179,2	1190,7	2062,3	2273,5	2990,7	3187,9	3293,5	3332,6	3913,4	3928,5
Senvion MM9 VB17	92	1087,9	1216,6	1871,9	2169,4	2927,5	3135,3	3236,9	3265,4	3810,2	3820,6
Senvion 3.2N VB18	1114	1542,4	1546,9	2424,0	2627,7	3335,6	3530,1	3635,8	3676,2	4259,5	4275,1
Vestas V-112 VB19	2	1430,8	1498,9	2300,1	2557,9	3303,7	3507,5	3612,2	3646,7	4214,7	4227,6
Senvion 3.2M VB20	1114	1503,0	1604,6	2329,4	2614,5	3370,7	3577,5	3680,5	3711,3	4265,0	4276,3
Senvion 3.2M VB21	1114	1786,9	1840,9	2663,8	2912,4	3651,7	3853,7	3958,8	3994,9	4567,4	4581,0
Senvion 3.2M VB22	1114	2053,4	2078,7	2938,8	3161,5	3881,3	4078,3	4183,9	4223,2	4804,0	4819,1
Vestas V-112 VB23	2	1899,4	1982,0	2748,8	3022,7	3774,8	3980,3	4084,2	4117,0	4678,1	4690,1
Senvion 3.6 N VB24	M114	2195,7	2247,5	3072,5	3320,8	4058,7	4260,2	4365,4	4401,9	4975,4	4989,1
Senvion 3.2N	1114	2270,1	2348,1	3122,2	3394,7	4145,7	4350,8	4455,0	4488,1	5050,6	5062,7

WEA IO	I11 IO-11 Bögelhus 4, Weesby	I12 IO-12 Kjerweg 2, Weesby	I13 IO-13 Grenzauwe g 4, Böxlund	I14 IO-14 Grenzauwe g 2, Böxlund	I15 IO-15 Bögelhus 1, Weesby	I16 IO-16 Bögelhus 3, Weesby	I17 IO-17 Bögelhus 12, Weesby	I18 IO-18 Bögelhus 10, Weesby	I19 IO-19 Bögelhus 8, Weesby	I20 IO-20 Bögelhus 6, Weesby
ZB01 ENERCON E-160 EP5 E3 ZB02	621,0	806,2	1488,9	1521,3	717,7	1248,9	1300,9	1217,9	965,3	764,3
ENERCON E-160 EP5 E3 ZB03	1137,9	612,5	973,8	1004,3	1105,1	1745,0	1789,7	1707,0	1461,0	1273,8
ENERCON E-138 EP3 E2 VB01	2121,2	1577,8	614,6	719,4	2221,0	2578,9	2595,4	2521,0	2318,9	2198,3
ENERCON E-101 VB02	1211,4	1653,5	2813,9	2805,1	824,5	1535,1	1618,3	1582,7	1459,1	1317,2
ENERCON E-101 VB03	1356,3	1576,8	2764,3	2746,1	867,7	1751,0	1835,2	1793,7	1648,9	1485,4
Senvion 3.2M114 VB04	1597,3	703,3	1818,4	1767,9	1015,0	2255,6	2333,2	2260,4	2022,6	1791,3
Senvion 3.2M114 VB05	2141,2	1048,1	1897,8	1821,6	1571,3	2807,4	2883,8	2809,7	2568,1	2335,7
Senvion 3.2M114 VB06	1432,8	978,8	744,3	813,8	1508,3	1956,5	1986,1	1906,6	1681,5	1531,9
Senvion 3.2M114 VB07	1739,6	1297,2	666,1	764,5	1857,7	2208,2	2228,0	2152,1	1944,2	1818,4
Senvion 3.2M114 VB08	2518,0	1786,0	610,0	678,1	2545,6	3010,9	3031,3	2955,2	2744,8	2610,4
Senvion 3.2M114 VB09	2862,6	2102,1	905,7	951,3	2885,7	3347,3	3365,6	3290,4	3083,7	2952,9
Senvion 3.2M114 VB10	515,9	1275,1	1772,0	1826,1	982,2	914,6	944,9	864,8	643,1	531,4
Senvion 3.2M114 VB11	812,2	1095,3	1417,8	1476,5	1106,2	1275,8	1304,1	1224,8	1004,1	874,3
Senvion 3.2M114 VB12	1170,1	1103,1	1103,5	1175,0	1379,9	1630,1	1653,1	1575,8	1363,5	1238,9
Senvion 3.2M114 VB13 Senvion 3.2M114	3328,0 3527,9	2512,4 2613,1	1317,4	1341,1	3331,3	3815,1 4047,6	3832,9 4070,4	3758,0 3993,4	3551,8	3420,4
VB14 Senvion 3.2M114	3857,4	2881,2	1450,7 1758,6	1450,5 1743,9	3478,2 3773,6	4394,0	4419,3	4341,5	3777,9 4121,4	3633,1 3969,7
VB15 Senvion 3.2M114	4104,7	3055,3	1997,1	1966,2	3974,4	4666,8	4696,5	4617,2	4390,0	4227,5
VB16 Senvion MM92	3865,9	3027,6	1841,6	1856,0	3863,8	4346,7	4362,6	4288,6	4085,5	3957,0
VB17 Senvion 3.2M114	4464,0	3394,7	2357,2	2323,3	4321,2	5029,8	5060,0	4980,5	4752,6	4588,7
VB18 Vestas V-112 VB19	4338,6	3384,9	2250,9	2241,4	4272,5	4857,6	4879,4	4802,9	4588,8	4444,7
Senvion 3.2M114 VB20	4338,8	3463,8	2292,6	2298,2	4320,0	4824,6	4840,8	4766,7	4562,8	4432,4
Senvion 3.2M114 VB21	4706,1	3727,5	2611,4	2597,1	4626,2	5230,3	5252,7	5176,0	4960,7	4814,6
Senvion 3.2M114 VB22	4984,8	3945,1	2878,0	2851,9	4864,9	5532,3	5558,7	5480,5	5258,4	5102,5
Vestas V-112 VB23	4770,2	3861,5	2706,8	2705,6	4734,4	5263,3	5280,3	5205,8	5000,3	4867,0
Senvion 3.6 M114 VB24	5114,1	4132,9	3020,3	3005,7	5034,3	5634,5	5655,8	5579,5	5365,9	5221,4
Senvion 3.2M114	5143,0	4230,9	3079,8	3077,5	5107,1	5632,5	5648,5	5574,5	5370,5	5238,9

	121
10	10-21
WEA	Betonstraße 2, Weesby
	z, weedly
ZB01	
ENERCON E-160 EP5	
E3 ZB02	822,0
ENERCON E-160 EP5	
E3	1206,7
ZB03	
ENERCON E-138 EP3	
E2 VB01	2324,1
ENERCON E-101	720,2
VB02	
ENERCON E-101	764,8
VB03 Senvion 3.2M114	4040.2
VB04	1019,3
Senvion 3.2M114	1576,3
VB05	
Senvion 3.2M114	1611,9
VB06 Senvion 3.2M114	1064.9
VB07	1961,8
Senvion 3.2M114	2645,1
VB08	
Senvion 3.2M114	2984,4
VB09 Senvion 3.2M114	4074.0
VB10	1071,0
Senvion 3.2M114	1207,9
VB11	
Senvion 3.2M114	1484,7
VB12 Senvion 3.2M114	3428,3
VB13	o mojo
Senvion 3.2M114	3571,2
VB14	2002 5
Senvion 3.2M114 VB15	3863,5
Senvion 3.2M114	4059,6
VB16	
Senvion MM92	3959,9
VB17	11017
Senvion 3.2M114 VB18	4404,7
Vestas V-112	4363,3
VB19	
Senvion 3.2M114	4414,6
VB20 Senvion 3.2M114	474E E
VB21	4715,5
Senvion 3.2M114	4950,2
VB22	
Vestas V-112	4827,3
VB23 Service 3.6 M114	E422.2
Senvion 3.6 M114 VB24	5123,3
Senvion 3.2M114	5199,7

9.2 Detaillierte Ergebnisse zur Beschattung

Tab. 1: Ergebnis der Beschattung des Immissionsortes IO-01 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-01	
x-Koordinate in m	32512084	
y-Koordinate in m	6078670	
z-Koordinate in m	24,84	

	Windenergieanlage	VB05	VB12						VB18						
	Typ der WEA	3.2M114	3.2M114	3.2M114	3.2M114	3.2M114	MM92	3.2M114	Vestas V-112	3.2M114					
	Nabenhöhe in m	93,0	123,0	123,0	123,0	123,0	100,0	123,0	119,0	123,0				.	ı
	Rotordurchm. WEA in m	114,0	114,0	114,0	114,0	114,0	92,0	114,0	112,0	114,0					
	x-Koordinate der WEA in m	32510806	32512631	32512736	32512978	32513084	32513153	32513375	32513481	32513587					
	y-Koordinate der WEA in m	6079514	6079003	6078683	6078401	6078045	6078872	6077826	6078361	6078671				.	ı
	Entfernung der WEA vom IO in m	1532	640	652	934	1179	1088	1542	1431	1503				.	ı
	Azimut der WEA bez. des IO in ° N	301	56	87	104	120	77	121	100	88					
	Astron. Beschattungsdauer in h/a	6,1	12,3	29,2	13,0	9,3	7,2	5,0	4,9	4,6					86,0
	Wahrscheinliche Beschattungsdauer in h/a													.	10,8
	Max. Beschatt.dauer in min/d	16,0	28,0	40,0	28,0	22,0	20,0	18,0	18,0	18,0				.	60,0
	Anzahl der Beschattungstage in d/a	34	34	56	35	32	28	24	23	22					209
Jahres-	Beginn Schattenperiode 1	16. Mai.	5. Jun.	3. Apr.	6. Mrz.	11. Feb.	14. Apr.	8. Feb.	10. Mrz.	28. Mrz.					8. Feb.
zeit	Ende Schattenperiode 1	1. Jun.	21. Jun.	30. Apr.	22. Mrz.	26. Feb.	27. Apr.	19. Feb.	20. Mrz.	7. Apr.					21. Jun.
	Beginn Schattenperiode 2	12. Jul.	22. Jun.	13. Aug.	21. Sep.	17. Okt.	16. Aug.	24. Okt.	23. Sep.	5. Sep.					22. Jun.
	Ende Schattenperiode 2	28. Jul.	8. Jul.	9. Sep.	8. Okt.	1. Nov.	29. Aug.	4. Nov.	4. Okt.	15. Sep.					4. Nov.
Min	Tägl. Beginn Schattenperiode 1	19:50	04:42	6:16	7:22	8:20	5:42	8:24	7:08	6:22					4:42
und	Tägl. Ende Schattenperiode 1	20:08	05:08	6:56	7:52	8:42	6:02	8:40	7:26	6:40			<u>l</u>	 <u> </u>	20:08
Max	Tägl. Beginn Schattenperiode 2	20:00	04:42	6:18	7:04	7:50	5:46	7:52	6:50	6:16					4:42
werte	Tägl. Ende Schattenperiode 2	20:16	05:10	6:58	7:32	8:12	6:06	8:10	7:08	6:34					20:16

Tab. 2: Ergebnis der Beschattung des Immissionsortes IO-02 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-02	
x-Koordinate in m	32511990	
y-Koordinate in m	6078515	
z-Koordinate in m	24	

	Windenergieanlage	VB05						VB18						
	Typ der WEA	3.2M114	3.2M114	3.2M114	3.2M114	Senvion MM92	3.2M114	Vestas V-112	3.2M114					
	Nabenhöhe in m	93,0	123,0	123,0	123,0	100,0	123,0	119,0	123,0					
	Rotordurchm. WEA in m	114,0	114,0	114,0	114,0	92,0	114,0	112,0	114,0					
	x-Koordinate der WEA in m	32510806	32512736	32512978	32513084	32513153	32513375	32513481	32513587					
	y-Koordinate der WEA in m	6079514	6078683	6078401	6078045	6078872	6077826	6078361	6078671					
	Entfernung der WEA vom IO in m	1549	765	995	1191	1217	1547	1499	1605					
	Azimut der WEA bez. des IO in ° N	308	75	94	111	71	114	94	82					
	Astron. Beschattungsdauer in h/a	4,6	27,0	11,5	8,4	6,1	4,8	4,2	4,2					66,0
	Wahrscheinliche Beschattungsdauer in h/a													6,8
	Max. Beschatt.dauer in min/d	12,0	36,0	26,0	22,0	18,0	18,0	16,0	18,0					52,0
	Anzahl der Beschattungstage in d/a	37	60	34	30	28	22	21	22					192
Jahres-	Beginn Schattenperiode 1	4. Jun.	20. Apr.	20. Mrz.	24. Feb.	24. Apr.	19. Feb.	20. Mrz.	5. Apr.					19. Feb.
zeit	Ende Schattenperiode 1	21. Jun.	19. Mai.	5. Apr.	9. Mrz.	7. Mai.	29. Feb.	29. Mrz.	15. Apr.					21. Jun.
	Beginn Schattenperiode 2	22. Jun.	25. Jul.	7. Sep.	5. Okt.	6. Aug.	14. Okt.	14. Sep.	28. Aug.					22. Jun.
	Ende Schattenperiode 2	10. Jul.	23. Aug.	23. Sep.	19. Okt.	19. Aug.	24. Okt.	24. Sep.	7. Sep.					24. Okt.
Min	Tägl. Beginn Schattenperiode 1	20:18	5:34	6:46	7:48	5:18	8:00	6:44	6:00					5:18
und	Tägl. Ende Schattenperiode 1	20:30	6:10	7:12	8:10	5:36	8:16	7:00	6:18					20:30
Max	Tägl. Beginn Schattenperiode 2	20:20	5:42	6:36	7:22	5:26	7:30	6:32	6:00					5:26
werte	Tägl. Ende Schattenperiode 2	20:32	6:18	7:02	7:44	5:44	7:48	6:48	6:16					20:32

Tab. 3: Ergebnis der Beschattung des Immissionsortes IO-03 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-03	
x-Koordinate in m	32511291	
y-Koordinate in m	6079064	
z-Koordinate in m	22	

	Windenergieanlage	ZB01	ZB02	VB07	VB08	VB09	VB10	VB12	VB13					
	Typ der WEA	ENERCON E- 160 EP5 E3	ENERCON E- 160 EP5 E3	Senvion 3.2M114	nvion 3.2M114									
	Nabenhöhe in m	99,0	99,0	93,0	93,0	93,0	93,0	123,0	123,0					
	Rotordurchm. WEA in m	160,0	160,0	114,0	114,0	114,0	114,0	114,0	114,0					
	x-Koordinate der WEA in m	32509965	32510417	32511858	32512196	32509924	32510243	32512631	32512736					
	y-Koordinate der WEA in m	6079600	6079349	6079246	6079176	6080069	6079899	6079003	6078683					
	Entfernung der WEA vom IO in m	1430	919	595	912	1697	1340	1341	1494					
	Azimut der WEA bez. des IO in ° N	290	286	70	81	304	306	90	102					
	Astron. Beschattungsdauer in h/a	9,3	29,1	64,4	14,2	6,0	11,3	6,2	4,8					135,4
	Wahrscheinliche Beschattungsdauer in h/a													16,7
	Max. Beschatt.dauer in min/d	24,0	40,0	46,0	28,0	14,0	20,0	20,0	18,0					88,0
	Anzahl der Beschattungstage in d/a	36	62	116	41	42	50	25	22					200
Jahres-	Beginn Schattenperiode 1	22. Apr.	14. Apr.	25. Apr.	7. Apr.	23. Mai.	28. Mai.	25. Mrz.	7. Mrz.					7. Mrz.
zeit	Ende Schattenperiode 1	9. Mai.	14. Mai.	21. Jun.	26. Apr.	12. Jun.	21. Jun.	5. Apr.	17. Mrz.					21. Jun.
	Beginn Schattenperiode 2	4. Aug.	30. Jul.	22. Jun.	17. Aug.	1. Jul.	22. Jun.	7. Sep.	27. Sep.					22. Jun.
	Ende Schattenperiode 2	21. Aug.	29. Aug.	18. Aug.	6. Sep.	21. Jul.	16. Jul.	19. Sep.	7. Okt.					7. Okt.
Min	Tägl. Beginn Schattenperiode 1	19:06	18:40	5:10	5:52	20:02	20:08	6:32	7:16					5:10
und	Tägl. Ende Schattenperiode 1	19:30	19:20	5:56	6:20	20:18	20:30	6:52	7:34					20:30
Max	Tägl. Beginn Schattenperiode 2	19:12	18:46	5:20	5:54	20:12	20:12	6:24	6:56					5:20
werte	Tägl. Ende Schattenperiode 2	19:38	19:28	6:06	6:22	20:26	20:32	6:44	7:14					20:32

Tab. 4: Ergebnis der Beschattung des Immissionsortes IO-04 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-04	
x-Koordinate in m	32510984	
y-Koordinate in m	6078916	
z-Koordinate in m	20,28	

	Windenergieanlage	ZB01					VB08							
	Typ der WEA	160 EP5 E3	160 EP5 E3	3.2M114	3.2M114	3.2M114	3.2M114	3.2M114						
	Nabenhöhe in m	99,0	99,0	93,0	93,0	93,0	93,0	123,0						
	Rotordurchm. WEA in m	160,0	160,0	114,0	114,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32509965	32510417	32509612	32509812	32511858	32512196	32512631						
	y-Koordinate der WEA in m	6079600	6079349	6078330	6077810	6079246	6079176	6079003						
	Entfernung der WEA vom IO in m	1227	713	1492	1611	934	1240	1649						
	Azimut der WEA bez. des IO in ° N	302	305	245	224	67	76	85						
	Astron. Beschattungsdauer in h/a	31,6	38,5	3,4	5,5	19,7	7,0	3,8						81,3
	Wahrscheinliche Beschattungsdauer in h/a													7,3
	Max. Beschatt.dauer in min/d	32,0	48,0	16,0	16,0	30,0	22,0	16,0						48,0
	Anzahl der Beschattungstage in d/a	79	68	20	32	55	29	20						209
Jahres-	Beginn Schattenperiode 1	13. Mai.	19. Mai.	16. Feb.	7. Jan.	29. Apr.	15. Apr.	2. Apr.						7. Jan.
zeit	Ende Schattenperiode 1	21. Jun.	21. Jun.	25. Feb.	23. Jan.	25. Mai.	28. Apr.	11. Apr.						21. Jun.
	Beginn Schattenperiode 2	22. Jun.	22. Jun.	18. Okt.	20. Nov.	18. Jul.	15. Aug.	1. Sep.						22. Jun.
	Ende Schattenperiode 2	30. Jul.	25. Jul.	27. Okt.	5. Dez.	14. Aug.	29. Aug.	10. Sep.						5. Dez.
Min	Tägl. Beginn Schattenperiode 1	19:42	19:42	16:58	15:36	5:02	5:34	6:10						5:02
und	Tägl. Ende Schattenperiode 1	20:16	20:30	17:14	15:56	5:32	5:56	6:26						20:30
Max	Tägl. Beginn Schattenperiode 2	19:50	19:44	16:28	15:18	5:12	5:40	6:08						5:12
werte	Tägl. Ende Schattenperiode 2	20:22	20:32	16:44	15:34	5:42	6:00	6:24						20:32

Tab. 5: Ergebnis der Beschattung des Immissionsortes IO-05 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-05	
x-Koordinate in m	32510226	
y-Koordinate in m	6078926	
z-Koordinate in m	21,4	

	Windenergieanlage	ZB03												
	Typ der WEA	138 EP3 E2	ENERCON E- 101		3.2M114	3.2M114	3.2M114							
	Nabenhöhe in m	96,0	99,0	99,0	93,0	93,0	93,0							
	Rotordurchm. WEA in m	138,0	101,0	101,0	114,0	114,0	114,0							
	x-Koordinate der WEA in m	32511520	32508505	32508551	32509612	32511144	32511858							
	y-Koordinate der WEA in m	6079549	6079136	6078885	6078330	6079614	6079246							
	Entfernung der WEA vom IO in m	1436	1734	1676	856	1147	1663							
	Azimut der WEA bez. des IO in ° N	62	275	266	224	51	77							
	Astron. Beschattungsdauer in h/a	10,2	1,4	1,7	26,6	3,0	2,4							45,3
	Wahrscheinliche Beschattungsdauer in h/a													3,0
	Max. Beschatt.dauer in min/d	22,0	10,0	12,0	32,0	10,0	14,0							32,0
	Anzahl der Beschattungstage in d/a	42	12	14	72	28	16							184
Jahres-	Beginn Schattenperiode 1	8. Mai.	1. Apr.	19. Mrz.	2. Jan.	8. Jun.	14. Apr.							2. Jan.
zeit	Ende Schattenperiode 1	28. Mai.	6. Apr.	25. Mrz.	6. Feb.	21. Jun.	21. Apr.							21. Jun.
	Beginn Schattenperiode 2	16. Jul.	6. Sep.	18. Sep.	6. Nov.	22. Jun.	22. Aug.					Ī		22. Jun.
	Ende Schattenperiode 2	5. Aug.	11. Sep.	24. Sep.	11. Dez.	5. Jul.	29. Aug.							11. Dez.
Min	Tägl. Beginn Schattenperiode 1	4:44	18:30	18:06	15:26	4:22	5:40							4:22
und	Tägl. Ende Schattenperiode 1	5:06	18:40	18:16	16:00	4:30	5:54							18:40
Max	Tägl. Beginn Schattenperiode 2	4:54	18:24	17:50	15:00	4:22	5:44						 	4:22
werte	Tägl. Ende Schattenperiode 2	5:16	18:36	18:04	15:34	4:32	5:58							18:36

Tab. 6: Ergebnis der Beschattung des Immissionsortes IO-06 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-06	
x-Koordinate in m	32510018	
y-Koordinate in m	6078918	
z-Koordinate in m	21,65	

	Windenergieanlage	ZB03	VB01	VB02	VB03	VB05	VB06						
	Typ der WEA	ENERCON E- 138 EP3 E2		ENERCON E- 101	Senvion 3.2M114	nvion 3.2M114	nvion 3.2M114						
	Nabenhöhe in m	96,0	99,0	99,0	93,0	93,0	93,0						
	Rotordurchm. WEA in m	138,0	101,0	101,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32511520	32508505	32508551	32509612	32510806	32511144						
	y-Koordinate der WEA in m	6079549	6079136	6078885	6078330	6079514	6079614						
	Entfernung der WEA vom IO in m	1629	1529	1467	715	988	1324						
	Azimut der WEA bez. des IO in ° N	65	276	266	212	51	56						
	Astron. Beschattungsdauer in h/a	5,6	2,4	2,7	44,0	3,0	16,4						73,8
	Wahrscheinliche Beschattungsdauer in h/a												6,6
	Max. Beschatt.dauer in min/d	18,0	14,0	14,0	40,0	10,0	20,0						40,0
	Anzahl der Beschattungstage in d/a	29	17	18	76	27	62						202
Jahres-	Beginn Schattenperiode 1	3. Mai.	2. Apr.	19. Mrz.	21. Dez.	9. Jun.	22. Mai.						21. Dez.
zeit	Ende Schattenperiode 1	16. Mai.	10. Apr.	27. Mrz.	29. Jan.	21. Jun.	21. Jun.						21. Jun.
	Beginn Schattenperiode 2	27. Jul.	3. Sep.	17. Sep.	15. Nov.	22. Jun.	22. Jun.						22. Jun.
	Ende Schattenperiode 2	10. Aug.	10. Sep.	25. Sep.	20. Dez.	5. Jul.	22. Jul.						20. Dez.
Min	Tägl. Beginn Schattenperiode 1	4:56	18:30	18:04	14:24	4:22	4:26						4:22
und	Tägl. Ende Schattenperiode 1	5:14	18:44	18:18	15:12	4:32	4:48						18:44
Max	Tägl. Beginn Schattenperiode 2	5:06	18:26	17:50	14:14	4:22	4:30						4:22
werte		5:24	18:42	18:06	15:02	4:32	4:54						18:42

Tab. 7: Ergebnis der Beschattung des Immissionsortes IO-07 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-07	
x-Koordinate in m	32509917	
y-Koordinate in m	6078949	
z-Koordinate in m	22	

	Windenergieanlage	ZB02		VB02	VB03	VB05	VB06						
	Typ der WEA	160 EP5 E3			nvion 3.2M114	nvion 3.2M114	nvion 3.2M114						
	Nabenhöhe in m	99,0	99,0	99,0	93,0	93,0	93,0						
	Rotordurchm. WEA in m	160,0	101,0	101,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32510417	32508505	32508551	32509612	32510806	32511144						
	y-Koordinate der WEA in m	6079349	6079136	6078885	6078330	6079514	6079614						
	Entfernung der WEA vom IO in m	640	1424	1367	690	1053	1396						
	Azimut der WEA bez. des IO in ° N	49	275	265	204	55	59						
	Astron. Beschattungsdauer in h/a	7,0	3,1	3,3	31,5	20,5	9,3						65,7
	Wahrscheinliche Beschattungsdauer in h/a												5,5
	Max. Beschatt.dauer in min/d	18,0	16,0	16,0	40,0	28,0	20,0						40,0
	Anzahl der Beschattungstage in d/a	33	18	19	59	59	46						174
Jahres-	Beginn Schattenperiode 1	5. Jun.	1. Apr.	17. Mrz.	21. Dez.	23. Mai.	14. Mai.						21. Dez.
zeit	Ende Schattenperiode 1	21. Jun.	9. Apr.	26. Mrz.	20. Jan.	21. Jun.	5. Jun.						21. Jun.
	Beginn Schattenperiode 2	22. Jun.	3. Sep.	18. Sep.	23. Nov.	22. Jun.	8. Jul.						22. Jun.
	Ende Schattenperiode 2	7. Jul.	11. Sep.	26. Sep.	20. Dez.	20. Jul.	30. Jul.						20. Dez.
Min	Tägl. Beginn Schattenperiode 1	4:22	18:28	17:58	13:48	4:22	4:36						4:22
und	Tägl. Ende Schattenperiode 1	4:40	18:42	18:14	14:34	4:52	4:56						18:42
Max	Tägl. Beginn Schattenperiode 2	4:22	18:22	17:44	13:44	4:24	4:44						4:22
werte	Tägl. Ende Schattenperiode 2	4:40	18:40	18:00	14:26	4:54	5:04						18:40

Tab. 8: Ergebnis der Beschattung des Immissionsortes IO-08 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-08	
x-Koordinate in m	32509890	
y-Koordinate in m	6078996	
z-Koordinate in m	22	

	Windenergieanlage	ZB02	VB01	VB02	VB03	VB05	VB06						
	Typ der WEA	160 EP5 E3	ENERCON E- 101		nvion 3.2M114	nvion 3.2M114	nvion 3.2M114						
	Nabenhöhe in m	99,0	99,0	99,0	93,0	93,0	93,0						
	Rotordurchm. WEA in m	160,0	101,0	101,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32510417	32508505	32508551	32509612	32510806	32511144						
	y-Koordinate der WEA in m	6079349	6079136	6078885	6078330	6079514	6079614						
	Entfernung der WEA vom IO in m	634	1392	1344	722	1052	1398						
	Azimut der WEA bez. des IO in ° N	54	273	263	200	58	61						
	Astron. Beschattungsdauer in h/a	35,9	3,5	3,5	19,0	26,1	7,4						68,6
	Wahrscheinliche Beschattungsdauer in h/a												5,78
	Max. Beschatt.dauer in min/d	46,0	16,0	16,0	32,0	26,0	18,0						46,0
	Anzahl der Beschattungstage in d/a	64	20	19	44	74	36						169
Jahres-	Beginn Schattenperiode 1	21. Mai.	29. Mrz.	14. Mrz.	21. Dez.	16. Mai.	10. Mai.						21. Dez.
zeit	Ende Schattenperiode 1	21. Jun.	7. Apr.	23. Mrz.	13. Jan.	21. Jun.	27. Mai.						21. Jun.
	Beginn Schattenperiode 2	22. Jun.	5. Sep.	21. Sep.	1. Dez.	22. Jun.	17. Jul.						22. Jun.
	Ende Schattenperiode 2	23. Jul.	14. Sep.	29. Sep.	20. Dez.	28. Jul.	3. Aug.						20. Dez.
Min	Tägl. Beginn Schattenperiode 1	4:22	18:22	17:52	13:36	4:32	4:44						4:22
und	Tägl. Ende Schattenperiode 1	5:08	18:38	18:08	14:12	5:00	5:02						18:38
Max	Tägl. Beginn Schattenperiode 2	4:22	18:16	17:36	13:34	4:38	4:54						4:22
werte	Tägl. Ende Schattenperiode 2	5:10	18:32	17:52	14:08	5:06	5:12						18:32

Tab. 9: Ergebnis der Beschattung des Immissionsortes IO-09 durch die WEA des Windparks

<u>Projektdaten</u>	
Projekt	Windpark Böxlund
Geographische nördl. Breite in °	54,859822
Geographische östl. Länge in °	9,163916
Wetterstation Sonnenscheindauer	Hamburg
Wetterstation Windrichtung	Hamburg
Immissionsort (IO)	
Bezeichnung	IO-09
x-Koordinate in m	32509362
y-Koordinate in m	6079254
z-Koordinate in m	20

	Windenergieanlage	ZB01		VB01	VB02	VB05	VB10	VB11						
	Typ der WEA	160 EP5 E3		ERCON E-101	ERCON E-101	nvion 3.2M114	nvion 3.2M114	nvion 3.2M114						
	Nabenhöhe in m	99,0	99,0	99,0	99,0	93,0	93,0	93,0						
	Rotordurchm. WEA in m	160,0	160,0	101,0	101,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32509965	32510417	32508505	32508551	32510806	32510243	32510596						
	y-Koordinate der WEA in m	6079600	6079349	6079136	6078885	6079514	6079899	6079808						
	Entfernung der WEA vom IO in m	695	1059	865	891	1467	1092	1353						
	Azimut der WEA bez. des IO in ° N	58	83	260	243	77	51	64						
	Astron. Beschattungsdauer in h/a	57,7	17,6	11,4	11,9	3,9	5,3	7,6						106,0
	Wahrscheinliche Beschattungsdauer in h/a													11,3
	Max. Beschatt.dauer in min/d	58,0	36,0	26,0	26,0	16,0	14,0	20,0						62,0
	Anzahl der Beschattungstage in d/a	82	44	34	35	22	34	35						208
Jahres-	Beginn Schattenperiode 1	12. Mai.	2. Apr.	10. Mrz.	15. Feb.	12. Apr.	5. Jun.	5. Mai.						15. Feb.
zeit	Ende Schattenperiode 1	21. Jun.	23. Apr.	26. Mrz.	2. Mrz.	22. Apr.	21. Jun.	22. Mai.						21. Jun.
	Beginn Schattenperiode 2	22. Jun.	20. Aug.	18. Sep.	11. Okt.	21. Aug.	22. Jun.	22. Jul.				Ī		22. Jun.
	Ende Schattenperiode 2	1. Aug.	10. Sep.	4. Okt.	28. Okt.	31. Aug.	8. Jul.	7. Aug.						28. Okt.
Min	Tägl. Beginn Schattenperiode 1	4:24	5:54	17:32	16:42	5:42	4:22	4:50						4:22
und	Tägl. Ende Schattenperiode 1	5:22	6:30	17:58	17:08	6:00	4:34	5:10						17:58
Max	Tägl. Beginn Schattenperiode 2	4:26	5:56	17:16	16:14	5:46	4:22	5:00						4:22
werte	Tägl. Ende Schattenperiode 2	5:24	6:30	17:42	16:40	6:02	4:36	5:20						17:42

Tab. 10: Ergebnis der Beschattung des Immissionsortes IO-10 durch die WEA des Windparks

<u>Projektdaten</u>	_	
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-10	
x-Koordinate in m	32509354	
y-Koordinate in m	6079278	
z-Koordinate in m	20	

	Windenergieanlage	ZB01	ZB02	VB01	VB02	VB05	VB10	VB11						
	Typ der WEA	ENERCON E- 160 EP5 E3		ENERCON E- 101	ERCON E-101	nvion 3.2M114	nvion 3.2M114	nvion 3.2M114						
	Nabenhöhe in m	99,0	99,0	99,0	99,0	93,0	93,0	93,0						
	Rotordurchm. WEA in m	160,0	160,0	101,0	101,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32509965	32510417	32508505	32508551	32510806	32510243	32510596						
	y-Koordinate der WEA in m	6079600	6079349	6079136	6078885	6079514	6079899	6079808						
	Entfernung der WEA vom IO in m	691	1065	861	894	1471	1084	1350						
	Azimut der WEA bez. des IO in ° N	60	84	258	242	78	53	65						
	Astron. Beschattungsdauer in h/a	68,1	17,0	11,5	12,1	3,7	10,0	7,2						119,2
	Wahrscheinliche Beschattungsdauer in h/a													13,7
	Max. Beschatt.dauer in min/d	58,0	34,0	28,0	26,0	16,0	20,0	20,0						68,0
	Anzahl der Beschattungstage in d/a	90	45	34	36	22	43	33						214
Jahres-	Beginn Schattenperiode 1	8. Mai.	31. Mrz.	8. Mrz.	12. Feb.	10. Apr.	31. Mai.	3. Mai.						12. Feb.
zeit	Ende Schattenperiode 1	21. Jun.	21. Apr.	24. Mrz.	29. Feb.	20. Apr.	21. Jun.	19. Mai.						21. Jun.
	Beginn Schattenperiode 2	22. Jun.	22. Aug.	20. Sep.	14. Okt.	23. Aug.	22. Jun.	25. Jul.						22. Jun.
	Ende Schattenperiode 2	5. Aug.	13. Sep.	6. Okt.	31. Okt.	2. Sep.	12. Jul.	9. Aug.						31. Okt.
Min	Tägl. Beginn Schattenperiode 1	4:30	6:00	17:28	16:38	5:46	4:22	4:54						4:22
und	Tägl. Ende Schattenperiode 1	5:30	6:34	17:54	17:04	6:04	4:40	5:14						17:54
Max	Tägl. Beginn Schattenperiode 2	4:34	6:00	17:08	16:08	5:48	4:22	5:04					. [4:22
werte	Tägl. Ende Schattenperiode 2	5:34	6:34	17:36	16:34	6:04	4:42	5:24						17:36

Tab. 11: Ergebnis der Beschattung des Immissionsortes IO-11 durch die WEA des Windparks

<u>Projektdaten</u>		_
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-11	
x-Koordinate in m	32509431	
y-Koordinate in m	6079917	
z-Koordinate in m	19,29	

	Windenergieanlage	ZB01	ZB02	VB01	VB02	VB05	VB06	VB09	VB10	VB11					
	Typ der WEA	160 EP5 E3	E-160 EP5 E3	ERCON E-101	ERCON E-101	nvion 3.2M114	nvion 3.2M114	nvion 3.2M114	nvion 3.2M114	on 3.2M114					
	Nabenhöhe in m	99,0	99,0	99,0	99,0	93,0	93,0	93,0	93,0	93,0				ı	
	Rotordurchm. WEA in m	160,0	160,0	101,0	101,0	114,0	114,0	114,0	114,0	114,0				ı	
	x-Koordinate der WEA in m	32509965	32510417	32508505	32508551	32510806	32511144	32509924	32510243	32510596				ı	
	y-Koordinate der WEA in m	6079600	6079349	6079136	6078885	6079514	6079614	6080069	6079899	6079808				ı	
	Entfernung der WEA vom IO in m	621	1138	1211	1356	1433	1740	516	812	1170				ı	
	Azimut der WEA bez. des IO in ° N	118	118	228	218	104	98	71	89	93				ı	
	Astron. Beschattungsdauer in h/a	55,8	15,0	8,7	13,1	3,7	1,8	85,1	17,0	6,7					189,2
	Wahrscheinliche Beschattungsdauer in h/a													ı	26,4
	Max. Beschatt.dauer in min/d	58,0	32,0	22,0	20,0	18,0	12,0	52,0	32,0	22,0				ı	64,0
	Anzahl der Beschattungstage in d/a	79	42	36	49	20	13	118	42	27				ı	340
Jahres-	Beginn Schattenperiode 1	7. Feb.	10. Feb.	17. Jan.	21. Dez.	4. Mrz.	14. Mrz.	24. Apr.	25. Mrz.	19. Mrz.					21. Dez.
zeit	Ende Schattenperiode 1	16. Mrz.	1. Mrz.	3. Feb.	15. Jan.	13. Mrz.	19. Mrz.	21. Jun.	14. Apr.	1. Apr.				1	21. Jun.
	Beginn Schattenperiode 2	27. Sep.	13. Okt.	9. Nov.	28. Nov.	1. Okt.	24. Sep.	22. Jun.	29. Aug.	12. Sep.					22. Jun.
	Ende Schattenperiode 2	5. Nov.	2. Nov.	26. Nov.	20. Dez.	10. Okt.	30. Sep.	19. Aug.	18. Sep.	24. Sep.				ı	20. Dez.
Min	Tägl. Beginn Schattenperiode 1	8:02	8:06	15:50	15:02	7:20	6:58	5:12	6:22	6:38					5:12
und	Tägl. Ende Schattenperiode 1	9:00	8:38	16:12	15:28	7:38	7:12	6:04	6:54	7:02				l	16:12
Max	Tägl. Beginn Schattenperiode 2	7:34	7:36	15:24	14:56	6:58	6:42	5:22	6:16	6:28				1	5:22
werte	Tägl. Ende Schattenperiode 2	8:32	8:08	15:44	15:20	7:16	6:54	6:14	6:50	6:50				ı	15:44

Tab. 12: Ergebnis der Beschattung des Immissionsortes IO-12 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-12	
x-Koordinate in m	32510126	
y-Koordinate in m	6078810	
z-Koordinate in m	22	

	Windenergieanlage	ZB03	VB01	VB02	VB03								
	Typ der WEA	138 EP3 E2		ERCON E-101	nvion 3.2M114								
	Nabenhöhe in m	96,0	99,0	99,0	93,0								
	Rotordurchm. WEA in m	138,0	101,0	101,0	114,0								
	x-Koordinate der WEA in m	32511520	32508505	32508551	32509612								
	y-Koordinate der WEA in m	6079549	6079136	6078885	6078330								
	Entfernung der WEA vom IO in m	1578	1653	1577	703								
	Azimut der WEA bez. des IO in ° N	60	279	270	225								
	Astron. Beschattungsdauer in h/a	8,7	1,8	2,2	35,7								48,4
	Wahrscheinliche Beschattungsdauer in h/a												3,3
	Max. Beschatt.dauer in min/d	20,0	12,0	12,0	40,0								40,0
	Anzahl der Beschattungstage in d/a	42	15	16	75								148
Jahres-	Beginn Schattenperiode 1	13. Mai.	7. Apr.	25. Mrz.	8. Jan.								8. Jan.
zeit	Ende Schattenperiode 1	2. Jun.	14. Apr.	1. Apr.	14. Feb.								2. Jun.
	Beginn Schattenperiode 2	11. Jul.	30. Aug.	11. Sep.	30. Okt.						T	T	11. Jul.
	Ende Schattenperiode 2	31. Jul.	5. Sep.	18. Sep.	5. Dez.								5. Dez.
Min	Tägl. Beginn Schattenperiode 1	4:38	18:40	18:16	15:26								4:38
und	Tägl. Ende Schattenperiode 1	4:56	18:54	18:28	16:06								18:54
Max	Tägl. Beginn Schattenperiode 2	4:46	18:40	18:06	14:58								4:46
werte	Tägl. Ende Schattenperiode 2	5:06	18:54	18:20	15:36								18:54

Tab. 13: Ergebnis der Beschattung des Immissionsortes IO-13 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-13	
x-Koordinate in m	32511314	
y-Koordinate in m	6078970	
z-Koordinate in m	22	

	Windenergieanlage	ZB01	ZB02	VB07	VB08	VB10	VB12	VB13						
	Typ der WEA	ENERCON E- 160 EP5 E3	ENERCON E- 160 EP5 E3	Senvion 3.2M114	Senvion 3.2M114	Senvion 3.2M114	Senvion 3.2M114	Senvion 3.2M114						
	Nabenhöhe in m	99,0	99,0	93,0	93,0	93,0	123,0	123,0						
	Rotordurchm. WEA in m	160,0	160,0	114,0	114,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32509965	32510417	32511858	32512196	32510243	32512631	32512736						
	y-Koordinate der WEA in m	6079600	6079349	6079246	6079176	6079899	6079003	6078683						
	Entfernung der WEA vom IO in m	1489	974	610	906	1418	1317	1451						
	Azimut der WEA bez. des IO in ° N	293	291	61	75	309	86	99						
	Astron. Beschattungsdauer in h/a	9,0	29,5	54,4	16,3	3,3	6,7	5,0						115,9
	Wahrscheinliche Beschattungsdauer in h/a													11,8
	Max. Beschatt.dauer in min/d	24,0	40,0	46,0	30,0	10,0	20,0	18,0						60,0
	Anzahl der Beschattungstage in d/a	37	66	82	46	32	26	22						182
Jahres-	Beginn Schattenperiode 1	27. Apr.	22. Apr.	12. Mai.	16. Apr.	6. Jun.	31. Mrz.	12. Mrz.						12. Mrz.
zeit	Ende Schattenperiode 1	14. Mai.	24. Mai.	21. Jun.	8. Mai.	21. Jun.	12. Apr.	22. Mrz.						21. Jun.
	Beginn Schattenperiode 2	29. Jul.	20. Jul.	22. Jun.	5. Aug.	22. Jun.	31. Aug.	22. Sep.						22. Jun.
	Ende Schattenperiode 2	16. Aug.	21. Aug.	1. Aug.	27. Aug.	7. Jul.	12. Sep.	2. Okt.						2. Okt.
Min	Tägl. Beginn Schattenperiode 1	19:16	18:58	4:40	5:30	20:20	6:16	7:04						4:40
und	Tägl. Ende Schattenperiode 1	19:40	19:36	5:30	5:58	20:30	6:36	7:22						20:30
Max	Tägl. Beginn Schattenperiode 2	19:24	19:06	4:44	5:36	20:22	6:12	6:46						4:44
werte	Tägl. Ende Schattenperiode 2	19:50	19:46	5:32	6:06	20:32	6:32	7:06						20:32

Tab. 14: Ergebnis der Beschattung des Immissionsortes IO-14 durch die WEA des Windparks

<u>Projektdaten</u>	
Projekt	Windpark Böxlund
Geographische nördl. Breite in °	54,859822
Geographische östl. Länge in °	9,163916
Wetterstation Sonnenscheindauer	Hamburg
Wetterstation Windrichtung	Hamburg
Immissionsort (IO)	
Bezeichnung	IO-14
x-Koordinate in m	32511297
y-Koordinate in m	6078865
z-Koordinate in m	22

	Windenergieanlage	ZB01	ZB02	VB07	VB08	VB12	VB13	VB14						
	Typ der WEA	ENERCON E- 160 EP5 E3	ENERCON E- 160 EP5 E3	Senvion 3.2M114	Senvion 3.2M114	Senvion 3.2M114	Senvion 3.2M114							
	Nabenhöhe in m	99,0	99,0	93,0	93,0	123,0	123,0	123,0						
	Rotordurchm. WEA in m	160,0	160,0	114,0	114,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32509965	32510417	32511858	32512196	32512631	32512736	32512978						
	y-Koordinate der WEA in m	6079600	6079349	6079246	6079176	6079003	6078683	6078401						
	Entfernung der WEA vom IO in m	1521	1004	678	951	1341	1450	1744						
	Azimut der WEA bez. des IO in ° N	297	296	53	69	82	95	103						
	Astron. Beschattungsdauer in h/a	10,0	43,6	18,7	17,4	6,8	5,0	3,0						94,6
	Wahrscheinliche Beschattungsdauer in h/a													9,7
	Max. Beschatt.dauer in min/d	24,0	38,0	32,0	28,0	20,0	18,0	14,0						58,0
	Anzahl der Beschattungstage in d/a	41	101	46	50	27	23	18						182
Jahres-	Beginn Schattenperiode 1	4. Mai.	2. Mai.	30. Mai.	26. Apr.	7. Apr.	18. Mrz.	6. Mrz.						6. Mrz.
zeit	Ende Schattenperiode 1	24. Mai.	21. Jun.	21. Jun.	20. Mai.	19. Apr.	28. Mrz.	14. Mrz.						21. Jun.
	Beginn Schattenperiode 2	20. Jul.	22. Jun.	22. Jun.	24. Jul.	24. Aug.	15. Sep.	30. Sep.						22. Jun.
	Ende Schattenperiode 2	8. Aug.	10. Aug.	14. Jul.	17. Aug.	6. Sep.	26. Sep.	8. Okt.						8. Okt.
Min	Tägl. Beginn Schattenperiode 1	19:30	19:18	4:22	5:08	6:00	6:48	7:20						4:22
und	Tägl. Ende Schattenperiode 1	19:54	19:56	4:54	5:36	6:20	7:06	7:34						19:56
Max	Tägl. Beginn Schattenperiode 2	19:40	19:28	4:22	5:18	6:00	6:36	6:58						4:22
werte	Tägl. Ende Schattenperiode 2	20:04	20:06	4:54	5:46	6:20	6:54	7:12						20:06

Tab. 15: Ergebnis der Beschattung des Immissionsortes IO-15 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-15	
x-Koordinate in m	32509313	
y-Koordinate in m	6079300	
z-Koordinate in m	20	

	Windenergieanlage	ZB01	ZB02	VB01	VB02	VB05	VB10	VB11						
	Typ der WEA	ENERCON E- 160 EP5 E3			ENERCON E- 101	Senvion 3.2M114		nvion 3.2M114						
	Nabenhöhe in m	99,0	99,0	99,0	99,0	93,0	93,0	93,0						
	Rotordurchm. WEA in m	160,0	160,0	101,0	101,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32509965	32510417	32508505	32508551	32510806	32510243	32510596						
	y-Koordinate der WEA in m	6079600	6079349	6079136	6078885	6079514	6079899	6079808						
	Entfernung der WEA vom IO in m	718	1105	824	868	1508	1106	1380						
	Azimut der WEA bez. des IO in ° N	63	85	256	239	80	55	66						
	Astron. Beschattungsdauer in h/a	76,3	15,2	12,9	13,3	3,3	18,5	6,4						137,1
	Wahrscheinliche Beschattungsdauer in h/a													16,6
	Max. Beschatt.dauer in min/d	54,0	34,0	28,0	28,0	16,0	26,0	20,0						74,0
	Anzahl der Beschattungstage in d/a	102	43	36	39	21	57	30						222
Jahres-	Beginn Schattenperiode 1	2. Mai.	29. Mrz.	5. Mrz.	8. Feb.	9. Apr.	24. Mai.	1. Mai.						8. Feb.
zeit	Ende Schattenperiode 1	21. Jun.	18. Apr.	22. Mrz.	26. Feb.	18. Apr.	21. Jun.	15. Mai.						21. Jun.
	Beginn Schattenperiode 2	22. Jun.	25. Aug.	22. Sep.	16. Okt.	25. Aug.	22. Jun.	29. Jul.						22. Jun.
	Ende Schattenperiode 2	11. Aug.	15. Sep.	9. Okt.	4. Nov.	4. Sep.	19. Jul.	12. Aug.						4. Nov.
Min	Tägl. Beginn Schattenperiode 1	4:40	6:04	17:20	16:28	5:50	4:22	5:00						4:22
und	Tägl. Ende Schattenperiode 1	5:38	6:38	17:48	16:56	6:08	4:50	5:20					1	17:48
Max	Tägl. Beginn Schattenperiode 2	4:46	6:02	17:00	15:58	5:52	4:24	5:10						4:24
werte	Tägl. Ende Schattenperiode 2	5:44	6:36	17:28	16:24	6:08	4:52	5:28						17:28

Tab. 16: Ergebnis der Beschattung des Immissionsortes IO-16 durch die WEA des Windparks

<u>Projektdaten</u>	_	
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-16	
x-Koordinate in m	32509137	
y-Koordinate in m	6080535	
z-Koordinate in m	20	

	Windenergieanlage	ZB01	ZB02	VB09	VB10	VB11							
	Typ der WEA	ENERCON E- 160 EP5 E3	ENERCON E- 160 EP5 E3	Senvion 3.2M114	Senvion 3.2M114	Senvion 3.2M114							
	Nabenhöhe in m	99,0	99,0	93,0	93,0	93,0							
	Rotordurchm. WEA in m	160,0	160,0	114,0	114,0	114,0							
	x-Koordinate der WEA in m	32509965	32510417	32509924	32510243	32510596							
	y-Koordinate der WEA in m	6079600	6079349	6080069	6079899	6079808							
	Entfernung der WEA vom IO in m	1249	1745	915	1276	1630							
	Azimut der WEA bez. des IO in ° N	136	130	118	118	114							
	Astron. Beschattungsdauer in h/a	20,8	6,2	13,6	5,9	2,6							42,2
	Wahrscheinliche Beschattungsdauer in h/a												3,5
	Max. Beschatt.dauer in min/d	32,0	20,0	30,0	20,0	14,0							42,0
	Anzahl der Beschattungstage in d/a	69	30	39	26	18							112
Jahres-	Beginn Schattenperiode 1	29. Dez.	20. Jan.	11. Feb.	12. Feb.	18. Feb.						1	29. Dez.
zeit	Ende Schattenperiode 1	1. Feb.	3. Feb.	29. Feb.	24. Feb.	26. Feb.						:	29. Feb.
	Beginn Schattenperiode 2	11. Nov.	9. Nov.	14. Okt.	19. Okt.	17. Okt.							14. Okt.
	Ende Schattenperiode 2	14. Dez.	23. Nov.	2. Nov.	31. Okt.	25. Okt.						<u></u>	14. Dez.
Min	Tägl. Beginn Schattenperiode 1	9:10	8:54	8:10	8:10	7:58							7:58
und	Tägl. Ende Schattenperiode 1	9:40	9:14	8:40	8:30	8:14							9:40
Max	Tägl. Beginn Schattenperiode 2	8:44	8:26	7:40	7:40	7:30			 	 		Ī	7:30
werte	Tägl. Ende Schattenperiode 2	9:20	8:48	8:10	8:00	7:44							9:20

Tab. 17: Ergebnis der Beschattung des Immissionsortes IO-17 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-17	
x-Koordinate in m	32509155	
y-Koordinate in m	6080618	
z-Koordinate in m	19,29	

	Windenergieanlage	ZB01	VB09	VB10	VB11							
	Typ der WEA	ENERCON E- 160 EP5 E3			Senvion 3.2M114							
	Nabenhöhe in m	99,0	93,0	93,0	93,0							
	Rotordurchm. WEA in m	160,0	114,0	114,0	114,0							
	x-Koordinate der WEA in m	32509965	32509924	32510243	32510596							
	y-Koordinate der WEA in m	6079600	6080069	6079899	6079808							
	Entfernung der WEA vom IO in m	1301	945	1304	1653							
	Azimut der WEA bez. des IO in ° N	139	123	121	117							
	Astron. Beschattungsdauer in h/a	25,3	13,7	6,0	2,5							42,8
	Wahrscheinliche Beschattungsdauer in h/a											3,8
	Max. Beschatt.dauer in min/d	30,0	28,0	20,0	14,0							42,0
	Anzahl der Beschattungstage in d/a	73	41	26	16							114
Jahres-	Beginn Schattenperiode 1	21. Dez.	3. Feb.	7. Feb.	14. Feb.							21. Dez.
zeit	Ende Schattenperiode 1	27. Jan.	22. Feb.	19. Feb.	21. Feb.							22. Feb.
	Beginn Schattenperiode 2	16. Nov.	21. Okt.	24. Okt.	22. Okt.							21. Okt.
	Ende Schattenperiode 2	20. Dez.	10. Nov.	5. Nov.	29. Okt.							20. Dez.
Min	Tägl. Beginn Schattenperiode 1	9:18	8:28	8:22	8:08							8:08
und	Tägl. Ende Schattenperiode 1	9:50	8:56	8:42	8:24							9:50
Max	Tägl. Beginn Schattenperiode 2	8:58	7:58	7:52	7:38							7:38
werte	Tägl. Ende Schattenperiode 2	9:38	8:26	8:12	7:54							9:38

Tab. 18: Ergebnis der Beschattung des Immissionsortes IO-18 durch die WEA des Windparks

<u>Projektdaten</u>		•
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-18	
x-Koordinate in m	32509208	
y-Koordinate in m	6080554	
z-Koordinate in m	20,3	

	Windenergieanlage	ZB01	ZB02	VB09	VB10	VB11						
	Typ der WEA	ENERCON E- 160 EP5 E3	ENERCON E- 160 EP5 E3	Senvion 3.2M114	Senvion 3.2M114	Senvion 3.2M114						
	Nabenhöhe in m	99,0	99,0	93,0	93,0	93,0						
	Rotordurchm. WEA in m	160,0	160,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32509965	32510417	32509924	32510243	32510596						
	y-Koordinate der WEA in m	6079600	6079349	6080069	6079899	6079808						
	Entfernung der WEA vom IO in m	1218	1707	865	1225	1576						
	Azimut der WEA bez. des IO in ° N	139	133	122	120	116						
	Astron. Beschattungsdauer in h/a	28,8	7,2	16,1	6,7	2,8						55,6
	Wahrscheinliche Beschattungsdauer in h/a											5,0
	Max. Beschatt.dauer in min/d	34,0	20,0	32,0	22,0	16,0						44,0
	Anzahl der Beschattungstage in d/a	75	34	44	28	18						125
Jahres-	Beginn Schattenperiode 1	21. Dez.	15. Jan.	5. Feb.	8. Feb.	15. Feb.						21. Dez.
zeit	Ende Schattenperiode 1	28. Jan.	31. Jan.	26. Feb.	21. Feb.	23. Feb.						26. Feb.
	Beginn Schattenperiode 2	15. Nov.	12. Nov.	17. Okt.	22. Okt.	19. Okt.						17. Okt.
	Ende Schattenperiode 2	20. Dez.	28. Nov.	7. Nov.	4. Nov.	27. Okt.						20. Dez.
Min	Tägl. Beginn Schattenperiode 1	9:18	9:00	8:22	8:18	8:04						8:04
und	Tägl. Ende Schattenperiode 1	9:52	9:22	8:54	8:40	8:20						9:52
Max	Tägl. Beginn Schattenperiode 2	8:58	8:34	7:52	7:48	7:36						7:36
werte	Tägl. Ende Schattenperiode 2	9:38	8:56	8:22	8:08	7:50						9:38

Tab. 19: Ergebnis der Beschattung des Immissionsortes IO-19 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-19	
x-Koordinate in m	32509338	
y-Koordinate in m	6080334	
z-Koordinate in m	18	

	Windenergieanlage	ZB01	ZB02	VB05	VB09	VB10	VB11						
	Typ der WEA	ENERCON E- 160 EP5 E3	ENERCON E- 160 EP5 E3	Senvion 3.2M114	Senvion 3.2M114		nvion 3.2M114						
	Nabenhöhe in m	99,0	99,0	93,0	93,0	93,0	93,0						
	Rotordurchm. WEA in m	160,0	160,0	114,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32509965	32510417	32510806	32509924	32510243	32510596						
	y-Koordinate der WEA in m	6079600	6079349	6079514	6080069	6079899	6079808						
	Entfernung der WEA vom IO in m	965	1461	1681	643	1004	1364						
	Azimut der WEA bez. des IO in ° N	137	130	117	112	113	110						
	Astron. Beschattungsdauer in h/a	40,3	10,5	2,4	27,3	10,7	4,5						80,8
	Wahrscheinliche Beschattungsdauer in h/a												7,8
	Max. Beschatt.dauer in min/d	40,0	26,0	14,0	40,0	26,0	18,0						60,0
	Anzahl der Beschattungstage in d/a	97	38	17	52	34	22						164
Jahres-	Beginn Schattenperiode 1	21. Dez.	20. Jan.	14. Feb.	21. Feb.	19. Feb.	24. Feb.						21. Dez.
zeit	Ende Schattenperiode 1	8. Feb.	7. Feb.	21. Feb.	17. Mrz.	5. Mrz.	4. Mrz.						17. Mrz.
	Beginn Schattenperiode 2	4. Nov.	5. Nov.	21. Okt.	26. Sep.	8. Okt.	9. Okt.						26. Sep.
	Ende Schattenperiode 2	20. Dez.	23. Nov.	29. Okt.	21. Okt.	25. Okt.	20. Okt.						20. Dez.
Min	Tägl. Beginn Schattenperiode 1	9:10	8:50	8:08	7:46	7:54	7:44						7:44
und	Tägl. Ende Schattenperiode 1	9:52	9:16	8:24	8:26	8:20	8:04						9:52
Max	Tägl. Beginn Schattenperiode 2	8:46	8:22	7:38	7:22	7:26	7:18						7:18
werte	Tägl. Ende Schattenperiode 2	9:32	8:48	7:52	8:02	7:52	7:36						9:32

Tab. 20: Ergebnis der Beschattung des Immissionsortes IO-20 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-20	
x-Koordinate in m	32509394	
y-Koordinate in m	6080108	
z-Koordinate in m	20	

	Windenergieanlage	ZB01					VB10	VB11						
	Typ der WEA	160 EP5 E3	160 EP5 E3		3.2M114	3.2M114	nvion 3.2M114	nvion 3.2M114						
	Nabenhöhe in m	99,0	99,0	99,0	93,0	93,0	93,0	93,0						
	Rotordurchm. WEA in m	160,0	160,0	101,0	114,0	114,0	114,0	114,0						
	x-Koordinate der WEA in m	32509965	32510417	32508505	32510806	32509924	32510243	32510596						
	y-Koordinate der WEA in m	6079600	6079349	6079136	6079514	6080069	6079899	6079808						
	Entfernung der WEA vom IO in m	764	1274	1317	1532	531	874	1239						
	Azimut der WEA bez. des IO in ° N	129	124	220	110	92	102	102						
	Astron. Beschattungsdauer in h/a	43,8	12,5	13,5	3,2	40,9	13,6	5,5						120,0
	Wahrscheinliche Beschattungsdauer in h/a													13,6
	Max. Beschatt.dauer in min/d	50,0	30,0	20,0	16,0	48,0	30,0	20,0						64,0
	Anzahl der Beschattungstage in d/a	76	39	57	19	65	38	24						240
Jahres-	Beginn Schattenperiode 1	18. Jan.	31. Jan.	21. Dez.	24. Feb.	22. Mrz.	7. Mrz.	7. Mrz.						21. Dez.
zeit	Ende Schattenperiode 1	24. Feb.	18. Feb.	19. Jan.	3. Mrz.	22. Apr.	25. Mrz.	18. Mrz.						22. Apr.
	Beginn Schattenperiode 2	19. Okt.	25. Okt.	24. Nov.	11. Okt.	21. Aug.	19. Sep.	26. Sep.						21. Aug.
	Ende Schattenperiode 2	25. Nov.	13. Nov.	20. Dez.	20. Okt.	22. Sep.	7. Okt.	7. Okt.						20. Dez.
Min	Tägl. Beginn Schattenperiode 1	8:42	8:30	15:10	7:44	6:30	7:08	7:12						6:30
und	Tägl. Ende Schattenperiode 1	9:32	8:58	15:38	8:02	7:18	7:40	7:32						15:38
Max	Tägl. Beginn Schattenperiode 2	8:12	7:58	15:02	7:18	6:26	6:50	6:52						6:26
werte	Tägl. Ende Schattenperiode 2	9:02	8:28	15:22	7:34	7:14	7:22	7:12						15:22

Tab. 21: Ergebnis der Beschattung des Immissionsortes IO-21 durch die WEA des Windparks

<u>Projektdaten</u>		
Projekt	Windpark Böxlund	
Geographische nördl. Breite in °	54,859822	
Geographische östl. Länge in °	9,163916	
Wetterstation Sonnenscheindauer	Hamburg	
Wetterstation Windrichtung	Hamburg	
Immissionsort (IO)		
Bezeichnung	IO-21	
x-Koordinate in m	32509213	
y-Koordinate in m	6079268	
z-Koordinate in m	19,27	

	Windenergieanlage	ZB01	ZB02	VB01	VB02	VB03	VB05	VB10	VB11					
	Typ der WEA	160 EP5 E3		101	ENERCON E- 101	3.2M114	3.2M114		nvion 3.2M114					
	Nabenhöhe in m	99,0	99,0	99,0	99,0	93,0	93,0	93,0	93,0					
	Rotordurchm. WEA in m	160,0	160,0	101,0	101,0	114,0	114,0	114,0	114,0					
	x-Koordinate der WEA in m	32509965	32510417	32508505	32508551	32509612	32510806	32510243	32510596					
	y-Koordinate der WEA in m	6079600	6079349	6079136	6078885	6078330	6079514	6079899	6079808					
	Entfernung der WEA vom IO in m	822	1207	720	765	1019	1612	1208	1485					
	Azimut der WEA bez. des IO in ° N	64	84	257	238	155	79	56	66					
	Astron. Beschattungsdauer in h/a	65,6	12,6	16,9	17,3	0,6	2,8	19,6	4,9					134,4
	Wahrscheinliche Beschattungsdauer in h/a													16,0
	Max. Beschatt.dauer in min/d	48,0	30,0	32,0	32,0	6,0	14,0	24,0	18,0					66,0
	Anzahl der Beschattungstage in d/a	104	38	41	43	9	18	64	27					236
Jahres-	Beginn Schattenperiode 1	1. Mai.	31. Mrz.	7. Mrz.	7. Feb.	21. Dez.	10. Apr.	21. Mai.	30. Apr.					21. Dez.
zeit	Ende Schattenperiode 1	21. Jun.	18. Apr.	26. Mrz.	27. Feb.	26. Dez.	18. Apr.	21. Jun.	13. Mai.					21. Jun.
	Beginn Schattenperiode 2	22. Jun.	25. Aug.	17. Sep.	15. Okt.	18. Dez.	25. Aug.	22. Jun.	31. Jul.					22. Jun.
	Ende Schattenperiode 2	12. Aug.	12. Sep.	7. Okt.	5. Nov.	20. Dez.	2. Sep.	23. Jul.	12. Aug.					20. Dez.
Min	Tägl. Beginn Schattenperiode 1	4:44	6:00	17:18	16:20	10:26	5:48	4:26	5:02					4:26
und	Tägl. Ende Schattenperiode 1	5:32	6:32	17:50	16:50	10:32	6:04	4:52	5:20					17:50
Max	Tägl. Beginn Schattenperiode 2	4:54	6:00	17:00	15:48	10:26	5:50	4:30	5:10					4:30
werte	Tägl. Ende Schattenperiode 2	5:42	6:30	17:32	16:20	10:30	6:04	4:56	5:28					17:32

9.3 Fotodokumentation

In der folgenden Fotodokumentation sind lediglich die Immissionsorte aufgeführt, bei denen die Zusatzbelastung einen maßgeblichen Anteil an der Überschreitung der täglichen und jährlichen Beschattungsdauer gemäß den LAI-Schattenwurfhinweisen hat. Eine vollständige Fotodokumentation aller Immissionsorte kann bei Bedarf angefordert werden.

IO-03 Grenzauweg 3, Böxlund

IO-04 Grenzstraße 1, Böxlund

IO-05 Weesbydamm 14, Weesby

IO-08 Kjerweg 1, Weesby

IO-09 Bögelhuus 2, Weesby

IO-10 Bögelhuus 2a, Weesby

IO-11 Bögelhuus 4, Weesby

IO-15 Bögelhus 1, Weesby

IO-19 Bögelhus 8, Weesby

IO-21 Betonstraße 2, Weesby

